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ABSTRACT 
 
This paper demonstrates how flexural wave propagations in a thin plate can be modelled by estimating the 
combined effect of the excitation and the sensor. A theoretical model for flexural wave propagation in thin 
plates is derived and it is compared with measurements. In addition, the performances of used filters and 
ARX (autoregressive exogeneous) model are compared on estimating the wave propagation in a thin quartz 
glass plate. Results indicate that the most accurate estimation of wave propagation is obtained when a linear 
phase filter which attributes all dispersions to the wave is used. 
Keywords: Flexural waves, filtering, ARX modeling, estimation of wave propagation. 
  
 
İNCE PLAKALARDA ELASTİK DALGA YAYILIMININ KESTİRİMİNDE FİLTRE 
PERFORMANSLARININ KIYASLANMASI 
 
ÖZET 
 
Bu çalışmada uyartım ve sensörün birleştirilmiş etkisi kestirilerek ince bir plakadaki elastik dalga yayılımının 
nasıl modelleneceği gösterilmiştir. İnce düzlemlerde elastik dalga yayılımı için teorik model türetilerek 
ölçümlerle karşılaştırılmıştır. Ayrıca, ince kuartz cam düzlemde dalga yayılımı kestiriminde kullanılan 
filtrelerin ve ARX (Autoregressive Exogeneous) model performansları karşılaştırılmıştır. Elde edilen 
sonuçlar, en doğru dalga yayılımı kestiriminin dalga modeline bütün saçılmaların katkısının eklenmesini 
sağlayan doğrusal faz filtre kullanıldığında sağlandığını göstermektedir. 
Anahtar Sözcükler: Elastik dalgalar, filtreleme, ARX modelleme, dalga yayılımı kestirimi. 
 
 
 
1. INTRODUCTION 
 
Flexural waves are surface waves that appear in thin media (thickness is small compared to the 
wavelength), for example plates and bars. A measurable property of a flexural wave is the local 
displacement which is perpendicular to the surface, depending on position and time. The 
investigation of flexural waves can be useful in structures. These waves travelling through plates 
have an important influence on the radiated sound field. Understanding how a wavefront 
propagates through a structure can give information about how this sound field is built up. For 
example, more efficient noiseless or vibration free systems can be designed if it is known exactly 
how these vibrations in plates behave. Also, the shape of wave carries information about the 
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material parameters of interest. For long-term stability and reliability of various devices, 
researchers should possess a deep understanding and knowledge of properties of materials and 
structures. In this regards, some methods have been investigated for modeling the flexural wave 
propagation and characterizing the material which has been used. 

Integral Equation Methods for modeling the flexural waves are an outgrowth of several 
years of work. Integral equation methods have been around for several decades, and their 
introduction to flexural waves has been due to the seminal works of Archenbach in the 1970s [1]. 
There was a surge in the interest in this topic in the 1980s [2, 3] due to increased computing 
power. The interest in this area was on the wane when it was demonstrated that differential 
equation methods, with their sparse matrices, can solve many problems more efficiently than 
integral equation methods. Recently, due to the advent of fast algorithms, there has been a revival 
in integral equation methods in modeling of flexural waves. Chew et. al. has presented a new 
approach for flexural wave propagation [4]. However, some problems appear when a dispersive 
wave mode can be recorded for known distances between excitation and sensor. The most 
important one is that the recorded signal is affected by the excitation and by the sensor, both 
which have unknown transfer functions. Therefore, these transfer functions have to be modelled 
by using filters in order to estimate the most accurate wave shape.  

Digital filters play an important role in signal processing applications. They are widely 
used in applications, such as digital signal filtering, noise filtering, signal frequency analysis, 
speech and audio compression, biomedical signal processing and image enhancement etc. A 
digital filter is a system which passes some desired signals more than others in order to reduce or 
enhance certain aspects of that signal. It can be used to pass the signals according to the specified 
frequency passband and reject the frequency other than the passband specification. The basic 
filter types can be classified into four categories such as lowpass, highpass, bandpass, and 
bandstop. On the basis of impulse response, digital filters are classified as Infinite Impulse 
Response (IIR) or Finite Impulse Response (FIR) filters depending upon whether the response of 
the filter is dependent on only the present or past inputs or on the present and past inputs as well 
as previous outputs, respectively [5].  Finite Impulse Response digital filter has strictly exact 
linear phase, relatively easy to design, highly stable, computationally intensive, less sensitive to 
finite wordlength effects, arbitrary amplitude frequency characteristic and realtime stable signal 
processing requirements etc. Thus, it is widely used in different digital signal processing 
applications [5-7].  

FIR filter is described by differential equation. The output signal is a convolution of an 
input signal and the impulse response of the filter.  
 

ሺ݊ሻݕ ൌ ∑ ݄ሺ݇ሻݔሺ݊ െ ݇ሻேିଵ
௞ୀ଴                                                                                                           (1) 

 

where N-1 is the order of the filter, N is the length of filter (which is equal to the 
number of coefficients),  x(n) is the input signal, h(n) is the impulse response of FIR filter. The 
transfer function of a LTI (Linear time-invariant) FIR filter is obtained by taking the z transform 
of impulse  response of FIR filter h(n).  
 

ሻݖሺܪ ൌ ∑ ݄ሺ݇ሻேିଵ
௞ୀ଴ zି௞                                                                                                                  (2) 

 

There are many straightforward techniques for designing FIR digital filters to meet 
arbitrary frequency and phase response specifications, such as window design method or 
frequency sampling techniques [8]. The choice of the filters is based on four broad criterions. The 
filters should provide the following: as little distortion as possible to the signal; flat pass band and 
exhibit high attenuation characteristics with as low as possible stop band ripples [9] .  

The difference equation for LTI IIR filter is defined as, 
 

∑ ܽ௞
ே
௞ୀ଴ ሺ݊ݕ െ ݇ሻ ൌ ∑ ܾ௞

ெ
௞ୀ଴ ሺ݊ݔ െ ݇ሻ                                                                                        (3) 

 

where x(n) is the input signal, y(n) is the output signal, {ak, bk} are the coefficients of 
filter, N and M are equal to the numbers of coefficients of input and output signals, respectively 
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[5]. The transfer function of LTI IIR filter can be obtained by taking z transform of both sides of 
the difference equation, 

 

ሻݖሺܪ ൌ
௒ሺ௭ሻ

௑ሺ௭ሻ
ൌ

∑ ௕ೖ௭షೖಾ
ೖసబ

ଵି∑ ௔ೖ௭షೖಿ
ೖసభ

                                                                                                            (4) 
 

where ɑ0 is assumed to be 1 and also the signs of ɑk  coefficients are assumed to change. 
Therefore IIR filters are commonly implemented using a feedback (recursive) structure, while 
FIR filters usually require no feedback (non-recursive). 

This paper presents a new solution method for flexural wave propagation and 
demonstrates how an accurate wave shape can be estimated by using an appropriate filter. The 
received signal which is recorded by excitation on a thin quartz glass plate is modelled. In order 
to model the unknown combined effect of the excitation and the sensor, some filter types are 
investigated and applied.  
 
2. THEORETICAL MODELING 
 
In this work, the flexural wave propagation in a thin plate with excitation and transducer 
recording of transversal surface particle speed by a transducer is modelled theoretically. Also the 
transducer mechanical to electrical transition of an excited wave is modelled, that makes up a 
filter for the signal from the wave.   

,ሾ݊ݑ ;ݎ ሿߠ  ൌ ݄௘௥ሾ݊ሿ כ ,ௌூோሾ݊݌ ;ݎ  ሿ                                                                                                (5)ߠ
 

݄௘௥ሾ݊ሿ ൌ ݄௘ሾ݊ሿ כ ݄௥ሾ݊ሿ                                                                                                                  (6) 
 

where n is time index (at sampling frequency fs=1/Ts); r is the excitation position, 
distance from the sensor; θ is plate parameters; u[n, r, θ] is the measured signal; he[n] is the 
excitation impulse response (source signal);  hr[n] is the receiver electromechanical impulse 
response; her[n] is collected filter; pSIR[n, r; θ] is the spatial impulse response, i.e. propagation of 
the wave in the plane. 

The plate thickness is small in comparison to the wavelength, and the plate is assumed 
to be infinitely large in the plane. To model the surface transversal speed, the derivative of the 
surface deflection [10] of an infinitely large plate is defined as 
 

,ݐௌூோሺ݌ ,ݎ ሻߠ ൌ ቐ

௔

ସ஽గ௧
sin ቀ

௥మ

ସ௔௧
ቁ ݐ      , ൐

௥

ඥଶ௔௙ೞ

ݐ                               0     ൑
௥

ඥଶ௔௙ೞ

ቑ                                                                          (7) 

 

where ܽ and D are defined as given in Equation (8) [10], 
 

ܽ ൌ
஽

ఘ௛
ܦ             , ൌ  

ா௛య

ଵଶሺଵି௩మሻ
                                                                                                          (8) 

 

In equations (7)-(8), r is defined as distance; t is time; D is stiffness of the plate; ܽ is a 
plate parameter; v is Poisson’s ratio; E is the modulus of elasticity (Pa)  and ρ is the plate density 
(kg/m3). 

Instantaneous frequency bound is applied on the signal p in order to limit the frequency 
content. Thus, unphysical waves travelling faster than the current speed of sound, or frequencies 
of the measured signal larger than the Nyquist frequency haven’t been taken into account. The 
instantaneous angular frequency is, 
                                      

ሻݐሺݓ ൌ
ௗ

ௗ௧
 ሻ                                                                                                                               (9)ݐሺ׎

 

where Ԅ(t)  is as follows                               

ሻݐሺ׎ ൌ
௥మඥఘ௛

ସ௧√஽
                                                                                                                                (10) 
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Frequency   ݂ א ሾ0   ௦݂/2ሾ  is related to sampling frequency fs (Hz), leads to the 
condition 
                                                                     

ଶగ௙ೞ

ଶ
൐ ݐ ሻ  andݐሺݓ ൐

௥ሺఘబሻభ/ర

ଶඥ௙ೞሺ஽ሻభ/ర                                                                                                    (11) 
 

The flexural wave surface speed is denoted with pSIR and the transducer signal is the 
convolution as given in Equation (12), 
 

ሻݐሺݑ ൌ ሻݐௌூோሺ݌ כ ݄௘௥ሺݐሻ                                                                                                               (12) 
 

where her(t) is the combined effect of the wave excitation and the transfer function of 
transducer. In frequency domain, the filter is estimated as,  
 

෩௘௥ሺ݂ሻܪ ൌ
௉෨ೄ಺ೃሺ௙ሻ

௎ሺ௙ሻ
                                                                                                                           (13) 

 

The problem is that the received signal is a convolution of two unknown quantities. 
Since     pSIR(t, r; ߠ) is a solution of wave equation, her(t) can be assumed to be subject to some 
bandwidth and phase constraints. It is possible to separate the two by implicitly obtaining an 
estimate of the wave shape. 
 
3. ESTIMATION OF WAVE PROPAGATION  
 
Butterworth filter, linear phase FIR filter designed by least squares and ARX model are applied 
for modeling the combined impulse response of the excitation and the sensor, her(t) in order to 
estimate the most accurate wave shape with minimum error. 
 
3.1. Butterwoth Filter 
 
The Butterworth filter is one of the most popular analog filter design paradigms, first described in 
1930 by Stephen Butterworth [11]. The basic philosophy of the conventional or integer order 
analog Butterworth filter is well practiced in various applications. It is designed to have a 
frequency response as flat as it is possible. The frequency response of these filters is monotonic 
and the sharpness of the roll-off from pass band to stop band is determined by the order of the 
filter. For conventional Butterworth filters the poles associated with the magnitude squared 
function are equally distributed in angle on a circle in the complex s-plane around the origin and 
having radius equal to the cut-off frequency (Ωc). When the cut-off frequency and the filter order 
are specified, the poles can be obtained readily and from the pole position the transfer function of 
the filter can easily be obtained. Now, while designing a Butterworth filter we generally have 
four specifications, the pass band frequency (Ωp), stop band frequency (Ωs), maximum allowable 
pass band and stop band attenuation (αp; αs). Butterworth filters are well suited for many data 
analysis applications. The M-th order frequency response of an analog Butterworth filter can be 
expressed as, 
 

|ሻݓሺܪ| ൌ
ଵ

ඥଵା௪మಾ
                                                                                                                        (14) 

 

Design procedures can be found in [12]. 
 
3.2. Linear Phase Filter 
 
The ability to have exact linear phase response is the one of the most important of FIR filters,                                       

ሻݓሺܪ                                          ൌ ሻݓሺ׎     ሺ௪ሻ          where׎ሻ|݁௝ݓሺܪ| ൌ െ݊ݓ଴                               
 

A general FIR filter does not have a linear phase response but this property is satisfied 
when,  

 

                                             ݄ሺ݊ሻ ൌ േ݄ሺܯ െ 1 െ ݊ሻ, ݊ ൌ 0, 1, … , ܯ െ 1 
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The design of linear phase filters constitutes an important class of problems in signal 
processing applications [13], due to the fact that such systems do not contribute to any group-
delay distortion of the input signal. In this correspondence, author restricts her attention to the 
class of linear phase FIR filters of length N, with impulse response parameterized by the 
coefficient vector. It is well know that a sufficient condition for linear phase for real FIR filters is 
given by the even/odd symmetry condition of the coefficient vector.  

There are several examples where linear phase filters arise naturally, often as a result of 
the solution to a design optimization problem. One such example is the design of narrow-band 
interference rejection filters for spread-spectrum systems which is known to have linear phase 
[14, 15]. Another recent instance arises in the design of L-filters (or linear combinations of order 
statistics of the input data) [16] which are well known to preserve signal edges while suppressing 
impulse-type noise.  

In many practical (real-time) applications, such linear phase filters must be designed in 
a data-adaptive manner. Some of the earlier work in this area concentrated on the family of least 
squares (LS) algorithms, [17] that sought to utilize the symmetry property of the optimal filter to 
obtain fast, efficient implementations.  

Linear-phase filter design by least squares has several advantages such as optimal with 
respect to square error criterion; simple, non-iterative method; allows the use of a frequency 
dependent weighting function [18]. Derivation algorithm for design of linear-phase FIR filters 
based on the square error criterion can be found in [17, 18]. 
 
3.3. ARX Model 
 
The autoregressive with exogenous excitation (ARX) [19] is a parametric black-box time domain 
model that describes the system response at a time step n as a function of its response history, 
system output {y(0), y(1), ...., y(n-1)}, and of the excitation contents, system input {x(0),x(1), ...., 
x(n)},  
 

ሺ݊ሻݕ ൌ ∑ ௝ߙ
ூ
௝ୀ଴ ሺ݊ݔ െ ݆ሻ ൅ ∑ ܾ௞

௄
௞ୀଵ ሺ݊ݕ െ ݇ሻ                                                                           (15) 

 

where {b1, b2, ..., bK}   are the constants known as the autoregressive (AR) parameters 
and {a0, a1, ...., aI} are constants constituting the exogenous part of the model. Here, all 
parameters are supposed to be obtained by means of identification techniques. Once specified the 
model structure, its order (parsimony), the number of parameters (I+K+1) which, in the context 
of vibrating structures is connected to the number of degrees of freedom, still remains to be 
determined. 

FIR filters can be interpreted as a particular ARX model in which linear system output 
at a time step n only depends on the input sequence excitation {x(0), x(1), ...., x(n)}. Thus, they 
are obtained setting bk= 0 in Equation (16),  
 

ሺ݊ሻݕ ൌ ∑ ௝ߙ
ூ
௝ୀ଴ ሺ݊ݔ െ ݆ሻ                                                                                                             (16) 

 

and in the Z-domain Equation (16) casts as, 
 

௒ሺ௭ሻ

௑ሺ௭ሻ
ൌ ሻݖሺܪ ൌ ∑ ௝ܽିݖ௝ூ

௝ୀ଴                                                                                                            (17) 
 

According to Equation (17), FIR filters do not possess poles [19]. 
 
4. EXPERIMENTAL SETUP 
 
A single low-cost passive sensor 7BB-20-6 with frequency specification 6.3±0.6kHz is mounted 
on a quartz glass plate whose dimensions are 0.002×0.5675×0.49 (m×m×m) in order to perform 
experimental studies. Excitations are done by means of a sharp metal object. The sensor is 
connected to a USB Ucontrol UCA202 Behringer device. A computer is used for acquisition of 
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the data from the measurements and recording the wave propagation in the plate. For the used 
plate parameters, thickness h is 0.002 m and density ρ is 2.5x103 kg/m3. The signals are sampled 
with 48 kHz while they are recorded. Excitations are done on various points on the plate and the r 
distances from the sensor to the excitation point are varied between 0.2 m and 1 m. The 
experimental setup is shown in Figure 1. 
 

 
 

Figure 1. Measurement setup. Excitation in the center of the dashed circles where r is the 
distance from the excitation to the sensor 

 
5. RESULTS 
 
The signals obtained from the setup composed of a quartz glass plate with 2 mm thickness have 
been evaluated in simulations. The exact value ranges of used quartz glass plate in the 
measurements are as, E= [50x109 - 90x109] (Pa) for elasticity modulus and v= [0.16 - 0.27] for 
Poisson’s ratio [20]. These give the limits for the plate parameter as D = [34.2091 - 64.7179] 
according to the Equation (8) and it is chosen as 49 Nm in the simulations. The principle is then 
verified with experiments on a 2 mm thick quartz glass plate with known density by exciting with 
a sharp material at different distances from the sensor. Then the recorded signals are sent to the 
computer and processed with MATLAB. Figure 2 shows the surface particle speeds obtained 
from two different excitation points. 
 

                   
 

Figure 2. Surface particle speeds at r=0.22 (m) and r = 0.82 (m) 
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As shown in Figure 2, when the excitation distance from the sensor is reduced, surface 
particle speed gets much less delayed and oscillated. 

In order to model the combined impulse response of the excitation and the sensor a 8th 
order Butterworth filter, 10th order linear phase FIR filter by LS and ARX model with aj 
coefficients are designed. The values of aj coefficients in ARX model are designed as {-0.0487,   
-0.0014, -0.0453, -0.2748, 0.0761, 0.5068, 0.0761, -0.2748, -0.0453, -0.0014, -0.0487, 0, 0, 0, 0} 
from a1 to a15. The magnitude and phase responses of the designed Butterworth and Firls filters 
are shown in Figure 3 and 4, respectively. 

As shown in Figure 3, designed Butterworth filter doesn’t have a linear phase response 
in the frequency range. On the other hand in Figure 4, FIR filter designed by LS has linear phase 
response in the frequency ranges between about 3 kHz and 20 kHz. 

Figure 5 shows a measured pulse and the final modelled pulses with Butterworth filter, 
linear phase FIR filter by LS and ARX model after the joint estimation of her(t) has completed. 
The pulse was excited by tapping the plate with a sharp object 0.82 cm away from the sensor. 
The signals received from the transducer is recorded during about 1 ms. Since some parts of the 
measured amplitude is very small or close to zero, the filters are band limited around the 
transducer center frequency. Thus, according to equation (12), dividing by small numbers is 
avoided. 

As shown in Figure 5, signal obtained from the transducer can be estimated with FIR 
filter by LS and ARX model, exactly. Nevertheless designed Butterworth filter fails to estimate, 
properly. The reason for success of Firls filter is linear phase response in the desired frequency 
ranges. Also, since FIR filter can be interpreted as a particular ARX model, the designed ARX 
model is able to estimate the observed signal properly, too. Because, flexural waves are highly 
dispersive waves and therefore in order to obtain an accurate estimation, all dispersions have to 
be attributed to the wave. According to the filter magnitude and phase responses given in Figure 
3 and 4, linear phase is necessary for this. 
 

 
    

Figure 3. Magnitude and phase response of designed 8th order Butterworth filter 
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Figure 4. Magnitude and phase response of designed 10th order Firls filter 
 

 
 

Figure 5. Observed and estimated signals with designed filters and ARX model 
 
6. CONCLUSISONS 
 
In this paper, the performances of 2 different filter types and ARX model have been investigated 
in order to model propagation of a flexural wave in thin plates. A dispersive wave mode has been 
recorded for known distances between excitation and sensor and the shape of the received wave 
has been obtained. Since the recorded signal is affected by both the excitation and the sensor, the 
combined effect of the excitation and the sensor has been modelled via designing FIR filter by 
LS, Butterworth filter and ARX model. Results indicate that propagation of flexural waves in thin 
plates can be modelled by means of estimating the combined effect of the excitation and the 
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sensor instead of the methods given in [1, 2, 4]. It also demonstrates that, since wave components 
with different frequencies travel at different speeds, a linear phase filter attributes all dispersion 
into the wave propagation. Therefore, the most accurate estimation of observed signal has been 
obtained when linear phase FIR filter by LS and ARX model are used in order to model the joint 
estimation of sensor and the excitation. 
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