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ABSTRACT 
 
This article is about a layerwise finite element which is developed for the linear static analysis of laminated 
composite plates. In the first part; the paper presents a review of the literature involving the available theories 
and their drawbacks for multilayered composite plates. A second part reviews a relevant keypoint (zig-zag 
form of the displacement field in the thickness direction) that should be considered for an accurate stress and 
strain field. In the third part, the paper explains the layerwise finite element and the derivation of its stiffness 
matrix. The final part of the paper is devoted to giving a comparison of selected results that can be acquired 
either by layerwise finite element(Genson) or the other available theories in the literature. 
Keywords: Laminated composite, finite element, zig-zag. 
MSC number/numarası: 74S05. 
 
GELİŞTİRİLEN TABAKALI SONLU ELEMANLA KOMPOZİT PLAKLARIN LİNEER STATİK 
ANALİZİ 
 
ÖZET 
 
Bu makale tabakalı kompozit plakların lineer statik analizini gerçekleştirmek amacıyla geliştirilen 
tabakaduyarlı yeni bir sonlu eleman hakkında olup; birinci bölüm tabakalı kompozit plaklar üzerine 
literatürde mevcut teorilere ve bu teorilerin eksikliklerini gözden geçirmeye ayrılmıştır. İkinci bölüm; doğru 
gerilme ve şekildeğiştirme alanlarının elde edilmesi amacıyla dikkat edilmesi gereken bir anahtar nokta olan 
tabaka kalınlığı doğrultusunda deplasman alanlarının zig-zag biçimine sahip olma gerekliliğini 
açıklamaktadır. Üçüncü bölüm; geliştirilen sonlu elemanın açıklanmasına ve bu sonlu elemanın rijitlik 
matrisinin çıkarılışına ayrılmıştır. Makalenin son bölümünde; geliştirilen sonlu eleman (Genson) ile 
literatürde mevcut diğer teorilerin karşılaştırmalı sonuçlarına yer verilmiştir.  
Anahtar Sözcükler: Tabakalı kompozit, sonlu eleman, zig-zag. 
 
 
 

1. INTRODUCTION 
 
Composite materials consist of two or more materials which together produce desirable 
properties such as stiffness, strength, corrosion resistance, thermal properties and fatique life that 
cannot be achieved with any of the constituents alone. Fiber reinforced composite materials for 
structural applications are often made in the form of a thin layer, called lamina. Structural 
elements such as beams or plates are formed by stacking the layers to achieve desired strength 
and stiffness. 
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In this section; the plate theories are explained from single layer structures through 
multilayered ones.  

First studies in the plate and shell literature are grouped as Love First Approximation 
Theory (LFAT) by Kirchhoff (1850) and Love (1927) with an assumption that normal to the 
reference surface Ω remain normal in the deformed states and do not change in length. Likewise, 
Cauchy (1828) and Poisson (1829) have studied in thin shell assumptions which can be assigned 
to the first grouping. Reissner (1945) and Mindlin (1951) considered not only the work done by 
in-plane stresses but also the work done by transverse shear stresses in their studies and they are 
grouped as Love Second Approximation Theory (LSAT). Extensions of Kirchoff-Love First 
Approximation Theory to layered structures are known as Classsical Lamination Theory (Jones 
1975). Applications of LSAT theories to multilayered structures are referred as the First Order 
Shear Deformation Theory (FSDT) by Whitney (1969). Thai and Choi (2013) proposed a simple 
FSDT for bending and free vibration analysis of laminates by making further simplifying 
assumptions to the existing FSDT, the number of unknowns and governing equations of the 
present FSDT are reduced by one. However, the drawback of FSDT comes from the 
representation of the constant transverse shear strains through laminate thickness and this 
discrepancy between the actual quadratic stress state and the constant stress state predicted by the 
first order theory is often corrected in computing transverse shear force resultants by multiplying 
the transverse stress integrals with a shear correction coefficient parameter. 

Due to the need for shear correction coefficients used in the first order theory, higher 
order theories such as Reddy’s theory (1997) are developed to have quadratic variation of the 
transverse shear strains and transverse shear stresses through each layer by expanding the 
displacement field in terms of the thickness coordinate up to any desired degree. However, its 
FEM implementation is somewhat hindered by the need to employ a Cଵ continuous basis for the 
transverse displacement. Mendonça et al. (2013) have presented a method to model the bending 
problem of arbitrary anisotropic laminated composite plates, which allows an arbitrary C୩ 
continuity under the kinematic hypothesis of the Third Order Plate Theory proposed by Reddy. 
Thai et al. (2012) have developed a finite element called NS-DSG3 based on a combination of 
node based smoothing discrete shear gap method with the Higher Order Shear Deformation Plate 
Theory (HSDT). Bhar et al. (2010) have brought out the significance of using the HSDT over the 
FSDT for analyzing laminated composite stiffened plates.  

Following Reddy (1997), these types of theories such as CLT, FSDT or HSDT are 
grouped as Equivalent Single Layer Theories (ESLM) which have a number of unknown 
variables that are independent of the number of constitutive layers NL. In addition to their 
inherent simplicity and low computational cost, the ESL models often provide sufficiently 
accurate description of global response for thin to moderately thick laminates, e.g., gross 
deflections, critical buckling loads. However, the ESL models are often incapable of accurately 
describing the state of stress and strain at the ply level near geometric and material 
discontinuities. In all equivalent single layer laminate theories based on assumed displacement 
fields and it is assumed that the displacements are continuous functions of the thickness 
coordinate. This in turn results in all stresses in ESL models are discontinuous at layer interfaces 
contrary to the actual transverse stress state. 
 
2. MATERIAL PROPERTIES OF LAMINATED COMPOSITE PLATES 
 
From Figure 1, it can be seen that a laminate is a collection of laminae which could have different 
material properties and fiber orientation to achieve the desired stiffness and thickness. 

As a direct consequence of exhibition of different mechanical and physical properties in 
the thickness direction, layered composite plates show higher transverse shear and transverse 
normal stress deformability. (GLT/ET ൎ GTT/ET ൌ 1/10~1/200, where L denotes the fiber 
directions, while T is direction orthogonal to L) than single layer plates. 
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From Figure 2, it is noticed that laminated composites are made from two materials: a 
reinforcement material called fiber and a base material, called matrix material. 
  

 
 

Figure 1. A laminate made up of plies with different fiber orientations 
 

 
 

Figure 2. Fiber and matrix materials in laminated composite plates 
 

The moduli and Poisson’s ratio of a laminated composite plate can be expressed in 
terms of the moduli, Poisson’s ratios and volume fractions of the matrix and fiber materials. Then 
it can be shown that the lamina engineering constants are given by 
 

Eଵ ൌ E୤V୤ ൅  E୫V୫              Ԃଵଶ ൌ V୤Ԃ୤ ൅  V୫Ԃ୫                              
 

 Eଶ ൌ
E౜Eౣ

E౜Vౣା EౣV౜
                  Gଵଶ ൌ

G౜ Gౣ

G౜Vౣା GౣV౜  
                                                                             (1) 

 

where Eଵ is the longitudinal modulus, Eଶ is transverse modulus, 12  is the major Poisson’s ratio, 
Gଵଶ is the shear modulus, E୤ is modulus of the fiber, E୫ is modulus of the matrix, V୤ is the fiber 
volume fraction, V୫ is the matrix volume fraction, f and m are the Poisson’s ratios of the fiber and 
matrix respectively. 

The stress and strain relationship of a typical orthotropic kth (k = 1,…,n) layer in the 
local co-ordinate system is 
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in which 
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Von Karman (1910) linear strain displacement relation is in the following form. 
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Figure 3. A lamina with global and material coordinate systems 
 

From Figure 3, it can be seen that the laminate is made of several orthotropic layers, 
with their material axes oriented arbitrarily with respect to the laminate coordinates, the 
constitutive equations of each layer given in Eq. (2) must be transformed to the laminate 
coordinates (global-x,y,z). 

For this aim, transformed stiffness matrix ሾQഥሿ is formulated as 
 

ሾQഥሿ ൌ  ሾTሿሾQሿሾTሿT                                                                                                                          (5) 
 

where ሾTሿ is transformation matrix obtained by 
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By introducing Eq. (5) into Eq. (2), the stress-strain relationship becomes, 
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2.1. Zigzag Effect 
 
Transverse discontinuous mechanical properties cause displacement fields u = (ݑଵ,  ଷሻ in theݑ ,ଶݑ
thickness direction which can exhibit a rapid change of their slopes in correspondence to each 
layer interface. Figure 4 shows how the scenarios of displacement u distributions in a laminated 
plate could appear in the exact solution or experiments. This displacement distribution is known 
as zig-zag effect in the literature defined by Carrera (1997). 
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Figure 4. Zig-zag effect in the laminated composite plates 
 

In all equivalent single layer laminate theories assume that the displacements are 
continuous functions of the thickness coordinate contrary to the actual zig-zag form of the 
laminated plates. Therefore; a possible, natural manner of including the zig-zag effect could be 
implemented by applying CLT, FSDT of TSDT at a layer level, that is, each layer is seen as an 
independent plate which is known as layerwise theory in the literature. 
 
3. LAYERWISE FINITE ELEMENT FORMULATION 
 
When the main emphasis of the analysis is to determine the overall global response of the 
laminated plates, for example, gross deflections, critical buckling loads, such global behavior can 
often be accurately determined using equivalent single layer laminate theories (ESL) especially 
for very thin laminates. As laminated composite materials undergo the transition from secondary 
structural components to primary critical structural components which are thicker, then the 
simple ESL theories are incapable of accurately determining the 3-D stress field at the ply level 
as a result of zig-zag effect explained in the previous section. 

As can be seen in Fig. 5, a 3-D layerwise serendipity finite element which has four 
nodes (cubic) per side in plan and three nodes(quadratic) in the thickness direction is developed 
in this study. 

The layerwise finite element has two in-plane degrees of freedom (u୧୨, v୧୨ሻ (I=1,..,12) 
(j=u,o,a) per plan and thickness nodes and a one (w) out of plane degrees of freedom which 
means א୸୸= 0.  

Figure 6 shows that a three layered layerwise finite element has a total of 180 nodal 
displacements per element.  
 

 
 

Figure 5. A 3-D layerwise finite element and node numbering 
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Figure 6. Nodal degrees of freedom in 3 layered layerwise finite element 
 

Lagrange cubic interpolation functions which are given in Reddy (2005) are used in 
plan as follows: 
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where r and s are local coordinates in plan. By separating r and s functions from each 
other, Eq. (8) becomes: 
 

Nଵሺr, sሻ ൌ TଶሺrሻLଶሺsሻ ൅ LଶሺrሻTଶሺsሻ െ LଶሺrሻLଶሺsሻ 
 

Nସሺr, sሻ ൌ TଵሺrሻLଶሺsሻ ൅ LଵሺrሻTଶሺsሻ െ LଵሺrሻLଶሺsሻ 
 

Nଽሺr, sሻ ൌ TଶሺrሻLଵሺsሻ ൅  LଶሺrሻTଵሺsሻ െ LଶሺrሻLଵሺsሻ 
 

Nଵଶሺr, sሻ ൌ TଵሺrሻLଵሺsሻ ൅ LଵሺrሻTଵሺsሻ െ LଵሺrሻLଵሺsሻ 
 

Nଵଵሺr, sሻ ൌ SଵሺrሻLଵሺsሻ    ;   Nଵ଴ሺr, sሻ ൌ Sଶሺrሻ Lଵሺsሻ 
 

Nଷሺr, sሻ ൌ SଵሺrሻLଶሺsሻ     ;   Nଶሺr, sሻ ൌ SଶሺrሻLଶሺsሻ 
 

N଼ሺr, sሻ ൌ SଵሺsሻLଵሺrሻ    ;    N଺ሺr, sሻ ൌ SଶሺsሻLଵሺrሻ 
 

N଻ሺr, sሻ ൌ SଵሺsሻLଶሺrሻ   ;    Nହሺr, sሻ ൌ SଶሺsሻLଶሺrሻ                                                                          (9) 
 

where T୧, L୧, S୧ (I=1,2) functions are defined as 
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Quadratic interpolation functions in the thickness direction are obtained as follows: 
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where ζ is the local coordinate in the thickness direction. Displacement fields (u, v, w) 
could be obtained by using Eqs. (9-11). For a displacement state (i = 1, … ,7) where only node 1 
displacements exist in a one layered layerwise finite element, the displacement fields could be 
obtained by using interpolation functions as follows : 
 
i=1  state uଵü ൌ 1 state u ൌ Nଵሺr, sሻψü

ሺζሻ v ൌ 0 w ൌ 0  
i=2  state vଵü ൌ 1 state v ൌ Nଵሺr, sሻψü

ሺζሻ u ൌ 0 w ൌ 0  
i=3  state uଵୟ ൌ 1 state u ൌ Nଵሺr, sሻψୟሺζሻ v ൌ 0 w ൌ 0  
i=4  state vଵୟ ൌ 1 state v ൌ Nଵሺr, sሻψୟሺζሻ u ൌ 0 w ൌ 0      (11) 
i=5  state uଵ୭ ൌ 1 state u ൌ Nଵሺr, sሻψ୭ሺζሻ v ൌ 0 w ൌ 0  
i=6  state vଵ୭ ൌ 1 state v ൌ Nଵሺr, sሻψ୭ሺζሻ u ൌ 0 w ൌ 0  
i=7  state wଵ ൌ 1 state w ൌ Nଵሺr, sሻ u ൌ 0 v ൌ 0  
 
3.1. First Order Stiffness Matrix of the Layerwise Element 
 
According to the principle of virtual displacement (PVD), stiffness matrix terms ሺk୧୨ሻ could be 
obtained by the work done by the stresses of the ith displacement state with the strains of the jth 
state such as: 
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By substituting Eqs. (4 – 7) in Eq. (12) and for i = j = 1 state, Eq. (12) yields, 
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Displacement fields in Eq. (13) could be rearranged in form of interpolation functions 
by considering Eq. (11) for i = 1 state yields, 
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As can be seen from Eq. (14), integrand contains derivatives with respect to the global 
coordinates (x, y, z) however; interpolation (shape) functions are written in local coordinate 
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቏                                                                (15) 

 

Linear Static Analysis of Laminated Composite Plates …       Sigma 32, 297-309, 2014 



304 
 

where ሾ J ሿ is called the Jacobian matrix of the transformation : 
 

ሾ J ሿ୶୷ ൌ ቎

பNభ

ப୰

பNమ

ப୰
பNభ

பୱ

பNమ

பୱ

 …    

பNౣసభమ

ப୰
பNౣసభమ

பୱ

቏ ቎

xଵ yଵ
xଶ yଶ

ڭ
x୫ୀଵଶ y୫ୀଵଶ

቏                                                                     (16) 

 

The element area dA = dx dy   in Eq. (14) is also transformed to  
 

dx dy ൌ det൫J୶୷൯dr ds                                                                                                                       (17) 
 

By considering Eqs. (15 - 17) in Eq. (14) yields, 
 

kଵଵ ൌ න න න ሾ Qଵଵതതതതത
ଵ

ିଵ
 ሺJଵଵ

כ
ଵ

ିଵ

୦/ଶ

ି୦/ଶ

∂Nଵሺr, sሻ

∂r

൅ Jଵଶ
כ ∂Nଵሺr, sሻ

∂s
ሻሺJଵଵ

כ ∂Nଵሺr, sሻ

∂r
൅ Jଵଶ

כ ∂Nଵሺr, sሻ

∂s
ሻψ

ü
ሺζሻψü

ሺζሻ 

              ൅Qଵ଺തതതതത ቆJଶଵ
כ ∂Nଵሺr, sሻ

∂r
൅ Jଶଶ

כ ∂Nଵሺr, sሻ

∂s
ቇψü

ሺζሻ ቆJଵଵ
כ ∂Nଵሺr, sሻ

∂r
൅ Jଵଶ

כ ∂Nଵሺr, sሻ

∂s
ቇψü

ሺζሻ 

              ൅Qଵ଺തതതതത ቆJଵଵ
כ ∂Nଵሺr, sሻ

∂r
൅ Jଵଶ

כ ∂Nଵሺr, sሻ

∂s
ቇψü

ሺζሻ ቆJଶଵ
כ ∂Nଵሺr, sሻ

∂r
൅ Jଶଶ

כ ∂Nଵሺr, sሻ

∂s
ቇψü

ሺζሻ   

              ൅Q଺଺തതതതത ቆJଶଵ
כ ∂Nଵሺr, sሻ

∂r
൅Jଶଶ

כ ∂Nଵሺr, sሻ

∂s
ቇψü

ሺζሻ ቆJଶଵ
כ ∂Nଵሺr, sሻ

∂r
൅ Jଶଶ

כ ∂Nଵሺr, sሻ

∂s
ቇψü

ሺζሻ 

             ൅Qହହതതതതത Nଵሺr, sሻJ୸
ିଵ ୢψü

ሺζሻ

ୢζ
Nଵሺr, sሻJ୸

ିଵ ୢψü
ሺζሻ

ୢζ
ሿ det൫J୶୷ ൯ dr ds dz                                          (18) 

 

Integration through thickness (z) direction is calculated using Table 1. 
 

Table 1. ׬ X Y dz
୦/ଶ

ି୦/ଶ   
 

X-Y ψü ψୟ ψ୭ ψü
′  ψୟ

′  ψ୭
′  

ψü 
2h
15

 
െh
30

 
h

15
 

1
2

 
1
6

 
െ2
3

 

ψୟ  
2h
15

 
h

15
 

െ1
6

 
െ1
2

 
2
3

 

ψ୭   
8h
15

 
2
3

 
െ2
3

 0 

ψü
′     

7
3h

 
1

3h
 

െ8
3h

 

 
The area integration of the stiffness matrix in Eq. (18) is evaluated by numerical 

integration using the Gauss quadrature formula with 4x4 sampling points. 
 

4. NUMERICAL RESULTS 
 
4.1. Square Plates 
 
As can be seen in Fig. 7, simply supported  [0/90/0] and  [0/90/90/0] layered cross ply square 
plates with length L and thickness h subjected to doubly sinusoidal loading q ൌ q଴Sinሺ

π୶

L
ሻSinሺ

π୷

L
ሻ 

are studied. The material properties are: Eଵ Eଶ⁄ ൌ 25.0, Gଵଶ ൌ Gଵଷ ൌ 0.5Eଶ,  Gଶଷ ൌ
0.2Eଶ,   υଵଶ ൌ υଵଷ ൌ 0.25. The whole plate is modeled with 6 x 6 meshes.  

K.A. Haşim, A.I. Saygun                                                            Sigma 32, 297-309, 2014 



305 
 

Calculations are performed for the normalized central deflection 

wഥ ൌ w଴ ቀ 
L

ଶ
,

L

ଶ
 ቁ ቀ 

Eమ ୦య

Lర ୯౥
 ቁ, normalized in plane stresses σ୶୶തതതത ൌ σ୶୶ሺ 

୦మ

Lమ୯బ
 ሻ at point (L/2,L/2,h/2), 

σ୷୷തതതത ൌ σ୷୷ሺ 
୦మ

Lమ୯బ
 ሻ at point (L/2,L/2,h/4), normalized shear stresses σ୷୸തതതത ൌ σ୷୸ሺ 

୦

L୯బ
 ሻ at point 

(L/2,0,0), σ୶୸തതതത ൌ σ୶୸ሺ 
୦

L୯బ
 ሻ at point (0,L/2,0) for the 3-layer plate and the 4-layer plate. 

The results are compared with the exact solutions from Pagano and Hatfield (1972) and 
Pagano (1969) and those obtained from layerwise finite element (Genson) with 6x6 mesh in 
Table 2 for the 3 layered square plate and in Table 3 for the 4 layered square plate. 

 

 
 

Figure 7.Simply supported cross ply 3 and 4 -layer square plates subjected to doubly sinusoidal 
loading 

 
Table 2. Normalized central deflection and stresses of a simply supported 3 -layer square plate 

under doubly sinusoidal loading 
 

     FSDT  

L/h Variable Genson  
Layerwise 

ELS† TSDT K = 1 
K = 
5/6 

K = 
3/4 

K = 
1/2 

CLPT 

4 

wഥ x 10ଶ 2.065 ----- 1.9218 1.5681 1.7758 1.9122 2.5770 0.4313 

σത୶୶ 0.789 0.755 0.7345 0.4475 0.4370 0.4308 0.4065 0.5387 

ሺσത୷୸ሻ 0.180 0.217 0.1832 0.1227 0.1561 0.1793 0.3030 ------- 

‡ --------- ------ 0.2086 0.1850 0.1968 0.2038 0.2311 0.0823 

10 

wഥ x 10ଶ 0.765 ------ 0.7125 0.6306 0.6693 0.6949 0.8210 0.4313 

σത୶୶ 0.599 0.590 0.5684 0.5172 0.5134 0.5109 0.4993 0.5387 

ሺσത୷୸ሻ 0.108 0.123 0.1033 0.0735 0.0915 0.1039 0.1723 -------- 

 --------- ------ 0.1167 0.1065 0.1108 0.1136 0.1267 0.0823 

100 

wഥ x 10ଶ 0.434 ------ 0.4342 0.4333 0.4337 0.4340 0.4353 0.4313 

σത୶୶ 0.542 0.552 0.5390 0.5385 0.5384 0.5384 0.5382 0.5387 

ሺσത୷୸ሻ 0.147 0.094 0.0750 0.0586 0.0703 0.0782 0.1174 -------- 

                                                 
† 3-D elasticity solution of Pagano (1969).  
‡ The second line corresponds to stresses computed from 3-D elasticity equilibrium equations. 
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Table 3. Normalized central deflection and stresses of a simply supported 4 layer square plate 
under sinusoidal loading 

 

L/h Source wഥ x 10ଶ σത୶୶ σത୷୷ σത୷୸ σത୶୸ 

4 

Genson 1.992 0.715 0.686 0.340 0.228 

ELS§ 1.954 0.720 0.663 0.292 0.219 

TSDT 
1.894 0.665 0.632 0.239 0.206 

   0.298 0.231** 

FSDT 
1.710 0.406 0.576 0.196 0.140 

   0.280 0.269 

10 

Genson 0.747 0.568 0.406 0.235 0.312 
ELS 0.743 0.559 0.401 0.196 0.301 

TSDT 
0.715 0.546 0.389 0.153 0.264 

   0.192 0.307 

FSDT 
0.663 0.4989 0.361 0.130 0.167 

   0.181 0.318 

20 

Genson 0.517 0.548 0.310 0.197 0.338 
ELS 0.517 0.543 0.308 0.156 0.328 

TSDT 
0.506 0.539 0.304 0.123 0.282 

   0.154 0.330 

FSDT 
0.491 0.527 0.296 0.109 0.175 

   0.150 0.333 

100 

Genson 0.434 0.542 0.274 0.242 0.375 
ELS 0.438 0.539 0.276 0.141 0.337 

TSDT 
0.434 0.539 0.271 0.112 0.290 

   0.139 0.339 
FSDT 0.434 0.538 0.270 0.101 0.178 

 
4.2. Circular Plates 
 
As can be seen in Figure 8, isotropic and orthotropic single layer circular plates with radius r = 6 
[m] subjected to uniform pressure are studied. Plates are analyzed using both simply supported 
and clamped boundary conditions. Isotropic material properties: Eଵ ൌ Eଶ ൌ 30x10଺ሺpsiሻ , ν ൌ
0.25, G୶୷ ൌ G୶୸ ൌ G୷୸ ൌ

E

ଶሺଵାνሻ
ൌ 12x10଺ ሺpsiሻ Orthotropic material properties: Eଵ ൌ

30x10଺ሺpsiሻ,  
Eଶ ൌ 0.75x10଺ሺpsiሻ, νଵଶ ൌ 0.25, νଶଵ ൌ 6.25x10ିଷ, G୶୷ ൌ G୶୸ ൌ 0.45x10଺ሺpsiሻ, G୷୸ ൌ
0.375x10଺ሺpsiሻ. The whole plate is modeled with 20 elements. The material fibers angle θ ൌ 0 
with respect to the global x axis is assumed. 

The results of isotrop one layered circular plates for clamped and simply supported 
boundary conditions under uniform pressure are compared with the exact solutions from 
Ugural(1981) and those obtained from layerwise finite element (Genson) in Figs. 9-10.  
 

                                                 
§ 3-D elasticity solution of Pagano and Hatfield (1972).  
** Equilibrium -derived stresses. 
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Figure 8. Axisymmetric single layer circular plate 
 

 

 Figure 9. Transverse displacements of single layer isotropic circular plate under uniform 
pressure  (r/h = 10) 

 

 
 

 Figure 10. Transverse displacements of single layer isotropic circular plate under uniform 
pressure (r/h = 50) 
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Table 4. Normalized central deflection of one layered clamped circular plates 
 

Normalized center deflection, wכ 
Number of elements 

a/h 12 20(GENSON) 
100 0.1159 0.1160 
50 0.1242 0.1280 
25 0.1373 0.1409 

 
The results of orthotropic single layer clamped circular plates under uniform pressure 

 ଴ for various plate aspect ratios (r/h) are compared with the finite element solutions from Wilt etݍ
al. (1990) in Table 4. Note that the quantities in the following tables are normalized center 
deflections, wכ, i.e. wכ ൌ wD/q଴aସ where D=3(Dଵଵ ൅ Dଶଶሻ ൅ 2ሺDଵଶ ൅ 2D଺଺ሻ and Dଵଵ, Dଶଶ, Dଵଶ 
and D଺଺ are bending stiffnesses. 

The results of orthotropic single layer clamped circular plates for various plate aspect 
ratios (r/h) under uniform pressure are also compared with closed form solution by Leiknithski 
(1968) and Murthy and Lakshminarayana (1984) in Figs. 11-12. 

 

 

Figure 11. Transverse displacements of single layer orthotropic circular plate under uniform 
pressure (r/h = 25) 

 

 

Figure 12. Transverse displacements of single layer orthotropic circular plate under uniform 
pressure (r/h = 50) 

 
5. CONCLUSIONS 
 
A 3-D layerwise serendipity finite element which has four nodes (cubic) per side in plan and 
three nodes(quadratic) in the thickness direction is developed in this study to analyze the linear 
static response of the laminated plates. The elements are simple, shear locking free and fast 
convergent. Numerical results show that the present elements are accurate and efficient compared 
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with the elasticity solutions in the literature for isotropic or orthotropic square and circular 
laminated plates.   
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