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ABSTRACT

This article is about a layerwise finite element which is developed for the linear static analysis of laminated
composite plates. In the first part; the paper presents a review of the literature involving the available theories
and their drawbacks for multilayered composite plates. A second part reviews a relevant keypoint (zig-zag
form of the displacement field in the thickness direction) that should be considered for an accurate stress and
strain field. In the third part, the paper explains the layerwise finite element and the derivation of its stiffness
matrix. The final part of the paper is devoted to giving a comparison of selected results that can be acquired
either by layerwise finite element(Genson) or the other available theories in the literature.
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GELISTIRiILEN TABAKALI SONLU ELEMANLA KOMPOZIT PLAKLARIN LINEER STATIiK
ANALIZi

OZET

Bu makale tabakali kompozit plaklarin lineer statik analizini gerceklestirmek amaciyla gelistirilen
tabakaduyarli yeni bir sonlu eleman hakkinda olup; birinci boliim tabakali kompozit plaklar iizerine
literatiirde mevcut teorilere ve bu teorilerin eksikliklerini gézden gegirmeye ayrilmistir. ikinci boliim; dogru
gerilme ve sekildegistirme alanlarinin elde edilmesi amaciyla dikkat edilmesi gereken bir anahtar nokta olan
tabaka kalinhigr dogrultusunda deplasman alanlarimin zig-zag bigimine sahip olma gerekliligini
aciklamaktadir. Ugiincii boliim; gelistirilen sonlu elemanin agiklanmasia ve bu sonlu elemanin rijitlik
matrisinin  ¢ikariligina ayrilmigtir. Makalenin son bolimiinde; gelistirilen sonlu eleman (Genson) ile
literatiirde mevcut diger teorilerin karsilagtirmali sonuglarina yer verilmistir.

Anahtar Sozciikler: Tabakali kompozit, sonlu eleman, zig-zag.

1. INTRODUCTION

Composite materials consist of two or more materials which together produce desirable
properties such as stiffness, strength, corrosion resistance, thermal properties and fatique life that
cannot be achieved with any of the constituents alone. Fiber reinforced composite materials for
structural applications are often made in the form of a thin layer, called lamina. Structural
elements such as beams or plates are formed by stacking the layers to achieve desired strength
and stiffness.
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In this section; the plate theories are explained from single layer structures through
multilayered ones.

First studies in the plate and shell literature are grouped as Love First Approximation
Theory (LFAT) by Kirchhoff (1850) and Love (1927) with an assumption that normal to the
reference surface Q remain normal in the deformed states and do not change in length. Likewise,
Cauchy (1828) and Poisson (1829) have studied in thin shell assumptions which can be assigned
to the first grouping. Reissner (1945) and Mindlin (1951) considered not only the work done by
in-plane stresses but also the work done by transverse shear stresses in their studies and they are
grouped as Love Second Approximation Theory (LSAT). Extensions of Kirchoff-Love First
Approximation Theory to layered structures are known as Classsical Lamination Theory (Jones
1975). Applications of LSAT theories to multilayered structures are referred as the First Order
Shear Deformation Theory (FSDT) by Whitney (1969). Thai and Choi (2013) proposed a simple
FSDT for bending and free vibration analysis of laminates by making further simplifying
assumptions to the existing FSDT, the number of unknowns and governing equations of the
present FSDT are reduced by one. However, the drawback of FSDT comes from the
representation of the constant transverse shear strains through laminate thickness and this
discrepancy between the actual quadratic stress state and the constant stress state predicted by the
first order theory is often corrected in computing transverse shear force resultants by multiplying
the transverse stress integrals with a shear correction coefficient parameter.

Due to the need for shear correction coefficients used in the first order theory, higher
order theories such as Reddy’s theory (1997) are developed to have quadratic variation of the
transverse shear strains and transverse shear stresses through each layer by expanding the
displacement field in terms of the thickness coordinate up to any desired degree. However, its
FEM implementation is somewhat hindered by the need to employ a C! continuous basis for the
transverse displacement. Mendonga et al. (2013) have presented a method to model the bending
problem of arbitrary anisotropic laminated composite plates, which allows an arbitrary CX
continuity under the kinematic hypothesis of the Third Order Plate Theory proposed by Reddy.
Thai et al. (2012) have developed a finite element called NS-DSG3 based on a combination of
node based smoothing discrete shear gap method with the Higher Order Shear Deformation Plate
Theory (HSDT). Bhar et al. (2010) have brought out the significance of using the HSDT over the
FSDT for analyzing laminated composite stiffened plates.

Following Reddy (1997), these types of theories such as CLT, FSDT or HSDT are
grouped as Equivalent Single Layer Theories (ESLM) which have a number of unknown
variables that are independent of the number of constitutive layers N. In addition to their
inherent simplicity and low computational cost, the ESL models often provide sufficiently
accurate description of global response for thin to moderately thick laminates, e.g., gross
deflections, critical buckling loads. However, the ESL models are often incapable of accurately
describing the state of stress and strain at the ply level near geometric and material
discontinuities. In all equivalent single layer laminate theories based on assumed displacement
fields and it is assumed that the displacements are continuous functions of the thickness
coordinate. This in turn results in all stresses in ESL models are discontinuous at layer interfaces
contrary to the actual transverse stress state.

2. MATERIAL PROPERTIES OF LAMINATED COMPOSITE PLATES

From Figure 1, it can be seen that a laminate is a collection of laminae which could have different
material properties and fiber orientation to achieve the desired stiffness and thickness.

As a direct consequence of exhibition of different mechanical and physical properties in
the thickness direction, layered composite plates show higher transverse shear and transverse
normal stress deformability. (Gpt/Etr = Gpp/Etr = 1/10~1/200, where L denotes the fiber
directions, while T is direction orthogonal to L) than single layer plates.
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From Figure 2, it is noticed that laminated composites are made from two materials: a
reinforcement material called fiber and a base material, called matrix material.

g g 6 =0°
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Fiber malzeme

Matris malzeme

Figure 2. Fiber and matrix materials in laminated composite plates

The moduli and Poisson’s ratio of a laminated composite plate can be expressed in
terms of the moduli, Poisson’s ratios and volume fractions of the matrix and fiber materials. Then
it can be shown that the lamina engineering constants are given by

E; = EfVi+ EnVi 912 = Vs + Vi Oy
_ EfEn, _ G Gy
E, = EtVm+ EmVs Giz = GfVm+ G Vg M

where E; is the longitudinal modulus, E, is transverse modulus, |, is the major Poisson’s ratio,
Gy, is the shear modulus, E¢ is modulus of the fiber, E;,, is modulus of the matrix, V¢ is the fiber
volume fraction, V, is the matrix volume fraction,  and , are the Poisson’s ratios of the fiber and
matrix respectively.

The stress and strain relationship of a typical orthotropic kth (k = 1,...,n) layer in the
local co-ordinate system is

k
Q11 Qi 0 1% €11 Gya1k k k
C[0231° _ [Qas O a3
l ] lle Qéz Q(ZJ l:i] > [013] - [ 0 st] []13] 2)

in which

299



K.A. Hasim, A.1. Saygun Sigma 32, 297-309, 2014

k E1k k 19121(]32 _ Ezk
Q11 1-0,,50,,F’ Q12 1-0,,50,,% Q22 = 1o0,50,,F
k k k k k k
Qes = G12, Qs = Ga3') Qss = Gy3 (3

Von Karman (1910) linear strain displacement relation is in the following form.
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Figure 3. A lamina with global and material coordinate systems

From Figure 3, it can be seen that the laminate is made of several orthotropic layers,
with their material axes oriented arbitrarily with respect to the laminate coordinates, the
constitutive equations of each layer given in Eq. (2) must be transformed to the laminate
coordinates (global-x,y,z).

For this aim, transformed stiffness matrix [Q] is formulated as

[Q] = [TI[QI[T]" (%)
where [T] is transformation matrix obtained by
cos? 0 sin? @ —sin 20 0 0
| sin%0 cos? 0 sin 20 0 0 |
[T] = | sinfcos® —sinBcosh cos?O —sin?0 0 | (6
0 0 0 cosO —sin0
l 0 0 0 sin® cosH J

By introducing Eq. (5) into Eq. (2), the stress-strain relationship becomes,

911 912 916[ ] Tyz 2[644 (_245] sz
xyk '

Ox
Oy =1Q1z Qa2 Qg = = Y @)
ny k Qlé 626 666 Qse Qss] ez

2.1. Zigzag Effect

xzdk

Transverse discontinuous mechanical properties cause displacement fields u = (u;, u, u3) in the
thickness direction which can exhibit a rapid change of their slopes in correspondence to each
layer interface. Figure 4 shows how the scenarios of displacement u distributions in a laminated
plate could appear in the exact solution or experiments. This displacement distribution is known
as zig-zag effect in the literature defined by Carrera (1997).
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Figure 4. Zig-zag effect in the laminated composite plates

In all equivalent single layer laminate theories assume that the displacements are
continuous functions of the thickness coordinate contrary to the actual zig-zag form of the
laminated plates. Therefore; a possible, natural manner of including the zig-zag effect could be
implemented by applying CLT, FSDT of TSDT at a layer level, that is, each layer is seen as an
independent plate which is known as layerwise theory in the literature.

3. LAYERWISE FINITE ELEMENT FORMULATION

When the main emphasis of the analysis is to determine the overall global response of the
laminated plates, for example, gross deflections, critical buckling loads, such global behavior can
often be accurately determined using equivalent single layer laminate theories (ESL) especially
for very thin laminates. As laminated composite materials undergo the transition from secondary
structural components to primary critical structural components which are thicker, then the
simple ESL theories are incapable of accurately determining the 3-D stress field at the ply level
as a result of zig-zag effect explained in the previous section.

As can be seen in Fig. 5, a 3-D layerwise serendipity finite element which has four
nodes (cubic) per side in plan and three nodes(quadratic) in the thickness direction is developed
in this study.

The layerwise finite element has two in-plane degrees of freedom (uy, vyj) (I=1,..,12)
(j=u,0,a) per plan and thickness nodes and a one (w) out of plane degrees of freedom which
means €,,= 0.

Figure 6 shows that a three layered layerwise finite element has a total of 180 nodal
displacements per element.
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Figure 5. A 3-D layerwise finite element and node numbering
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Figure 6. Nodal degrees of freedom in 3 layered layerwise finite element

Lagrange cubic interpolation functions which are given in Reddy (2005) are used in
plan as follows:

N, = %(1 +1,0)(1 +5,9)[9(r% +52) —10] ; (a=14,9,12)

N, = %(1 +9r,r)(1 +s,5)(1 —r?) ; (a=2310,11)

Na = (1+95,5) (1 +1)(1—52) ; (a=567.8) (8)
where r and s are local coordinates in plan. By separating r and s functions from each

other, Eq. (8) becomes:

N;(r,8) = T,(DLa(s) + Ly (1) Tz(s) — Ly(D)La(s)

N4(r,s) = Ty (DLz(s) + Li(D)Tz(s) — Ly (DLa(s)

No(r,s) = To(r)L1(s) + Lp(r)Ti(s) — Lo (r)Ly(s)

Nyz(r,s) = Ty (r)L1(s) + Li(0)Ty(s) — Ly (r)Ly(s)

Ni1(r,8) = S1(L1(s) ; Nyp(r,s) = S,(r) Ly(s)

N3(r,s) = S1(DLy(s) 5 Na(r,s) = S;(r)L(s)

Ng(r,s) = S1(8)Ly1(r) ; Ng(r,s) = Sz(s)Ly(r)

N7 (r,s) = S1(s)L,(r) ; Ns(r,s) = S;(s)L,(r) C)
where Tj, Lj, S; (I=1,2) functions are defined as

-1 -1
L =TA-9)1+) ;B =T-(0-9)1-1)
-1 -1
L) =T (1-9D1+5) 5 T =—=(1-9)(1-3)
S —21—213 ; S —21—21—3
(O =e1=mA+3) 5 S0 =1 -1 -31)
S —11—213 ; S —21—21—3
(= (=sDA+39) 1 S(9) = (L-sD(1-39)

L) =51 +1) ; L) =51 -71) (10)

T2
Quadratic interpolation functions in the thickness direction are obtained as follows:
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VO =3C(1+0)

-1
v, O =—C(1-0)
v, =(1-%) 11

where ( is the local coordinate in the thickness direction. Displacement fields (u, v, w)
could be obtained by using Egs. (9-11). For a displacement state (i = 1, ... ,7) where only node 1
displacements exist in a one layered layerwise finite element, the displacement fields could be
obtained by using interpolation functions as follows :

i=1 state uy; = 1 state u =Ny (r,s)y,; (O v=0 w=0
i=2 state vy = 1 state v =N;(r,s)y,(© u=0 w=0
i=3 state u;, = 1 state u =Ny (1), v=20 w=0
i=4 state Via = 1 state v =Ny (r,s)y,(© u=0 w= (11)
i=5 state u;, = 1 state u =Ny (r,9)v, (© v=0 w=20
i=6 state Vi, = 1 state v =N,y (O u=0 w=0
i=7 state w; = 1 state w = Ny (r,5) u=0 v=20

3.1. First Order Stiffness Matrix of the Layerwise Element

According to the principle of virtual displacement (PVD), stiffness matrix terms (kj;) could be
obtained by the work done by the stresses of the ith displacement state with the strains of the jth
state such as:

h/2 (b/2 a/2
f h/zf b/2 f_a/z(cxi ng + Oyi 8yj + Txyi ny]' + sziYXZ]' + Tyzi szj)dX dy dz (12)
By substituting Egs. (4 — 7) in Eq. (12) and for i =j = 1 state, Eq. (12) yields,

2 _aul(r s) du, (T, s) — 0duy(r,s) 0uq(r,s)
f_,f f ax + Qi dy Jx

aul(r s) 0u1(r s) duy (1,5) aul(r s)

+ Qe —— ay + Qss

Dlsplacement fields in Eq. (13) could be rearranged in form of interpolation functions
by considering Eq (11) for i =1 state yields,

aul(r uy (r,5) 0u1(r s)

+Qi6 —L2y dx dy dz (13)

— 6N ON N, (r, N, (r,
f__ J-__J- 2 l(r . vi© B(r 2 i@+ Qs 10(; 2 v (© 16(): 2 v (©
)\ ON N, (1, N, (r,
+ e la(): L@y © + 0 T 0 0
+QgsNy (1, 5) == W"(O N, (r, )dw (o]dxdydz (14)

As can be seen from Eq. (14), integrand contains derivatives with respect to the global
coordinates (X, y, z) however; interpolation (shape) functions are written in local coordinate

system (r, s, ¢). The relation aN;ﬁ;'s) and 24 a(r ) o 0N1 nd — is obtained by :
ON;(r,s) ON;(r,5) o ON;(r,s)
ox | _ -1 ar | _ [ a2 ar
ONi(rs)| — [ ]Xy aN;(rs)| — [];1 ];2] ON;(r,s) (15)
ady ds ds
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where [ ] ] is called the Jacobian matrix of the transformation :
W M Mo X
_|or or XZ
[]]Xy - % 5& ONp= 12] I (16)
0s 0s Xm=12 Ym 12
The element area dA = dx dy in Eq. (14) is also transformed to

dxdy = det(]xy)dr ds (17)
By considering Eqgs. (15 - 17) in Eq. (14) yields,

k= [ " f f (@ 03, 2

s
#1101, T, BB 0@

0 (1 ), 1 2 ) (1 aNla(: 241 22,0

05 (12 2 12 P 0 (1 P 4 @

#0515 150 0 (1 D 415 v ©

Qs Ny 97 AN, (1, ) 2] det(Jyy ) dr ds dz as)

Integration through thickness (z) dlrecnon is calculated using Table 1.

h/2

Table 1. [ ny2 XY dz

X-Y A Va A Vi V v,
2h ~h h 1 1 =2

u 15 30 15 2 6 3

v 2h h -1 -1 2

a 15 15 6 2 3

v 8h 2 ) o

° 15 3 3

, 7 1 -8
Va 3h 3h 3h

The area integration of the stiffness matrix in Eq. (18) is evaluated by numerical
integration using the Gauss quadrature formula with 4x4 sampling points.

4. NUMERICAL RESULTS
4.1. Square Plates

As can be seen in Fig. 7, simply supported [0/90/0] and [0/90/90/0] layered cross ply square
plates with length L and thickness h subjected to doubly sinusoidal loading q = q, Sin(%)Sin(%)

are studied. The material properties are: E;/E, =25.0, G;; = G353 = 0.5E,, G5 =
0.2E,, vy, = vq3 = 0.25. The whole plate is modeled with 6 x 6 meshes.
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Calculations are  performed for the normalized central deflection

3 2
W =w, (%,% ) ( ff 20 ), normalized in plane stresses Gyy = Oyx( L};—qo) at point (L/2,L/2,h/2),
h
L

2
Gyy = cyy(L};—qO) at point (L/2,L/2,h/4), normalized shear stresses Gy, = GyZ(E) at point

(L/2,0,0), Gy = 0y, ( %) at point (0,L/2,0) for the 3-layer plate and the 4-layer plate.
0

The results are compared with the exact solutions from Pagano and Hatfield (1972) and
Pagano (1969) and those obtained from layerwise finite element (Genson) with 6x6 mesh in
Table 2 for the 3 layered square plate and in Table 3 for the 4 layered square plate.

Figure 7.Simply supported cross ply 3 and 4 -layer square plates subjected to doubly sinusoidal
loading

Table 2. Normalized central deflection and stresses of a simply supported 3 -layer square plate
under doubly sinusoidal loading

FSDT
. Genson + _ K =K =|K =
L/h | Variable Layerwise ELS TSDT K=1 /6 34 12 CLPT
W x 102 2.065 | - 1.9218 1.5681 | 1.7758 | 1.9122 | 2.5770 | 0.4313
Gyx 0.789 0.755 | 0.7345 | 0.4475 | 0.4370 | 0.4308 | 0.4065 | 0.5387
4
(Sy2) 0.180 0.217 | 0.1832 | 0.1227 | 0.1561 | 0.1793 | 0.3030 | -------
P e ] e 0.2086 | 0.1850 | 0.1968 | 0.2038 | 0.2311 | 0.0823
W x 102 0.765 | - 0.7125 | 0.6306 | 0.6693 | 0.6949 | 0.8210 | 0.4313
Gyx 0.599 0.590 | 0.5684 | 0.5172 | 0.5134 | 0.5109 | 0.4993 | 0.5387
10 _
(Gy2) 0.108 0.123 | 0.1033 | 0.0735 | 0.0915 | 0.1039 | 0.1723 | --------
--------------- 0.1167 | 0.1065 | 0.1108 | 0.1136 | 0.1267 | 0.0823
W x 102 0434 | - 0.4342 | 0.4333 | 0.4337 | 0.4340 | 0.4353 | 0.4313
100 Gxx 0.542 0.552 | 0.5390 | 0.5385 | 0.5384 | 0.5384 | 0.5382 | 0.5387
(Sy2) 0.147 0.094 | 0.0750 | 0.0586 | 0.0703 | 0.0782 | 0.1174 | --------

T 3-D elasticity solution of Pagano (1969).
¥ The second line corresponds to stresses computed from 3-D elasticity equilibrium equations.
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Table 3. Normalized central deflection and stresses of a simply supported 4 layer square plate
under sinusoidal loading

L/h Source w x 102 Oxx Gyy Gy, Gz

Genson 1.992 0.715 0.686 0.340 0.228

ELS} 1.954 0.720 0.663 0.292 0.219

4

1.894 0.665 0.632 0.239 0.206
TSDT 0.298 0.231"

1.710 0.406 0.576 0.196 0.140

FSDT 0.280 0.269

Genson 0.747 0.568 0.406 0.235 0.312

ELS 0.743 0.559 0.401 0.196 0.301

0.715 0.546 0.389 0.153 0.264

10 TSDT 0.192 0.307
0.663 0.4989 0.361 0.130 0.167

FSDT 0.181 0.318

Genson 0.517 0.548 0.310 0.197 0.338

ELS 0.517 0.543 0.308 0.156 0.328

0.506 0.539 0.304 0.123 0.282

20 TSDT 0.154 0.330
0.491 0.527 0.296 0.109 0.175

FSDT 0.150 0.333

Genson 0.434 0.542 0.274 0.242 0.375

ELS 0.438 0.539 0.276 0.141 0.337

100 0.434 0.539 0.271 0.112 0.290
TSDT 0.139 0.339

FSDT 0.434 0.538 0.270 0.101 0.178

4.2. Circular Plates

As can be seen in Figure 8, isotropic and orthotropic single layer circular plates with radius r = 6
[m] subjected to uniform pressure are studied. Plates are analyzed using both simply supported

and clamped boundary conditions. Isotropic material properties: E; = E, = 30x10°(psi),v =
E

0.25, Gyy = Gy, = Gy, = Frer i 12x10° (psi)  Orthotropic ~material properties: E; =
30x10°(psi),
E, = 0.75x10%(psi), vip = 0.25, v,y = 6.25x1073, Gy, = Gy, = 0.45x10%(psi), Gy, =
0.375x108(psi). The whole plate is modeled with 20 elements. The material fibers angle 6 = 0
with respect to the global x axis is assumed.

The results of isotrop one layered circular plates for clamped and simply supported
boundary conditions under uniform pressure are compared with the exact solutions from
Ugural(1981) and those obtained from layerwise finite element (Genson) in Figs. 9-10.

$3.D elasticity solution of Pagano and Hatfield (1972).
** Equilibrium -derived stresses.
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wiSimply Supported-Ugural{(1981))
M.GENSON({Simply Supported)
Aww(Clamped-Ugural(1981))

> GENSON(Clamped)

r/h=10

Transverse Displacement (w)

Radius3 (r)

Figure 9. Transverse displacements of single layer isotropic circular plate under uniform
pressure (r/h =10)

20000,000

18000,000 #ww(Simply Supported-Ugural{1981)}
Aw(Clamped-Ugural(1981))
16000,000 W-GENSON{Clamped)

< GENSON(Simply Supported)
14000,000

r/h=50
12000,000
10000,000
8000,000

6000,000

Transverse Displacement (w)

4000,000

2000,000

0,000

Radius (r)

Figure 10. Transverse displacements of single layer isotropic circular plate under uniform
pressure (r/h = 50)
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Table 4. Normalized central deflection of one layered clamped circular plates

Normalized center deflection, w*
Number of elements
a/h 12 20(GENSON)
100 0.1159 0.1160
50 0.1242 0.1280
25 0.1373 0.1409

The results of orthotropic single layer clamped circular plates under uniform pressure
qo for various plate aspect ratios (r/h) are compared with the finite element solutions from Wilt ez
al. (1990) in Table 4. Note that the quantities in the following tables are normalized center
deflections, w*, i.e. w* = wD/qgpa* where D=3(D;; + D5;) + 2(Dy, + 2Dgg) and Dy4, D5y, Dy5
and Dgg are bending stiffnesses.

The results of orthotropic single layer clamped circular plates for various plate aspect
ratios (r/h) under uniform pressure are also compared with closed form solution by Leiknithski
(1968) and Murthy and Lakshminarayana (1984) in Figs. 11-12.

wiop-Leiknitshki( 1968)
MWGENSON({Clarmped)

a/h=25

=
—
=
o
=
a
=1
=
=
=]
=
a
=
=
7]
=
@
=
=
=

Radius (r)

Figure 11. Transverse displacements of single layer orthotropic circular plate under uniform
pressure (r/h = 25)

itshki(1968)

Transverse Displacement (w)

z

Radius3 (r)
Figure 12. Transverse displacements of single layer orthotropic circular plate under uniform
pressure (r/h = 50)

5. CONCLUSIONS

A 3-D layerwise serendipity finite element which has four nodes (cubic) per side in plan and
three nodes(quadratic) in the thickness direction is developed in this study to analyze the linear
static response of the laminated plates. The elements are simple, shear locking free and fast
convergent. Numerical results show that the present elements are accurate and efficient compared
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with the elasticity solutions in the literature for isotropic or orthotropic square and circular
laminated plates.

REFERENCES / KAYNAKLAR

Kirchhoff G., “Uber das Gleichgewicht und die Bewegung einer elastishen Scheibe”,
J.Angew Math., 40, 51-88, 1850.

Bhar, A., Phoenix, S.S. and Satsangi, S.K. (2010), “Finite element analysis of laminated
composite stiffened plates using FSDT and HSDT: A comparative perspective”,
Composite Structures., 92,312-321.

Love, A.E.H. (1927), The Mathematical Theory of Elasticity, (4th Edition), Cambridge
Univ Press, Cambridge.

Cauchy, A.L. (1828), “Sur I’equilibre et le mouvement d’une plaque solide”, Exercises de
Mathematique., 3, 328-355.

Thai, C.H., Tran L.C., Tran D.T., Nguyen-Thoi, T. and Nguyen-Xuan, H. (2012),
“Analysis of laminated composite plates using higher order shear deformation plate
theory and node based smoothed discrete shear gap method”, Applied Mathematical
Modelling., 36, 5657-5677.

Poisson, S.D. (1829), “Memoire sur I’equilibre et le mouvement des corps elastique”,
Mem. Acad. Sci., 8, 357.

Reissner, E. (1945), “The effect of transverse shear deformation on the bending of elastic
plates”, ASME J. Appl. Mech., 12, 69-76.

Mindlin, R.D. (1951), “Influence of rotary inertia and shear in flexural motions of
isotropic elastic plates”, ASME J. Appl. Mech., 18, 1031-1036.

Mendonga, P.T.R., Barcellos, C.S. and Torres, D.A.F. (2013), “Robust CX/C° generalized
FEM approximations for higher-order conformity requirements: Application to Reddy’s
HSDT model for anisotropic laminated plates”, Composite Structures., 96, 332-345.
Jones, R.M. (1975), Mechanics of Composite Materials, Mc Graw Hill, New York.
Whitney, J. (1969), “The effects of transverse shear deformation on the bending of
laminated plates”, J. Compos. Mater., 3, 534-547.

Reddy, J.N. (1997), Mechanics of Laminated Composite Plates. Theory and Analysis,
CRC Press, Boca Raton FL.

Von Karman, T. (1910), “Festigkeitsprobleme in Maschinenbau”, Encyklopadie der
Mathematischen Wissenschaften, 4, 311-385.

Pagano, N.J. and Hatfield, S.J. (1972), “Elastic Behavior of Multilayered Bidirectional
Composites”, 4I4A Journal, 10, 931-933.

Pagano, N.J. (1969), “Exact Solutions for Composite Laminates in Cylindrical Bending”,
Journal of Composite Materials, 3, 398-411.

Carrera, E. and Kroplin, B. (1997), “Zig-zag and interlaminar equilibria effects in large
deflection and postbuckling analysis of multilayered plates”, Mechanics of Composite
Materials and Structures, 4, 69-94.

Reddy, J.N. (2005), An Introduction to the Finite Element Method, Mc Graw Hill, NY.
Ugural, A.C. (1981), Stresses in Plates and Shells, Mc Graw Hill, New York.

Wilt, T.E., Saleeb, A.F. and Chang, T.Y. (1990), “A mixed element for laminated plates
and shells”, Computers and Structures., 37, 597-611.

Leiknitshki, S. (1968), Anisotropic Plates.

Huu-Tai, T. and Dong-Ho, C. (2013), “A simple first order shear deformation theory for
laminated composite plates”, Composite Structures, 106, 754-763

Murthy, S.S. and Lakshminarayana, H.V. (1984), “A shear flexible triangular finite
element model for laminated composite plates”, Journal for Numerical Methods in
Engineering, 20, 591-623.

309



