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ABSTRACT 
 
In this paper, the influence of the bonded imperfectness on torsional wave dispersion in the finitely pre-
strained hollow bi-material compound circular cylinder made of highly-elastic material were investigated. 
The investigations are carried out within the scope of the piecewise homogeneous body model with the use of 
the Three-dimensional Linearized Theory of Elastic Waves in Initially Stresses Bodies. The mechanical 
relations of the materials of the cylinders are described  through the harmonic potential. Numerical results on 
the effects of the imperfectness of the boundary condition on the influence of the initial stresses on the wave 
propagation velocity are presented and discussed. 
Keywords: Torsional wave dispersion, imperfect contact condition, initial stress, compounded cylinder. 
  
 
ELASTİKİYETİ YÜKSEK MALZEMEDEN YAPILMIŞ ÖNGERİLMELİ İDEAL OLMAYAN 
BAĞLANMAYA SAHİP İÇİ BOŞ BİLEŞİK SİLİNDİRDE BURULMA DALGALARININ 
YAYILMASI 
 
ÖZET 
 
Bu çalışmada, elastikiyeti yüksek malzemeden yapılmış öngerilmeli içi boş bileşik silindirde burulma dalga 
yayılımına ideal olmayan bağlanmanın etkisi araştırıldı. Araştırmalar Öngerilmeli Cisimlerde Üç Boyutlu 
Doğrusallaştırılmış Elastik Dalga Yayılımı Teorisi kullanılarak parçalı homojen cisim modeli çerçevesinde 
yürütülmektedir. Silindir malzemesinin mekanik ilişkileri harmonik potansiyel ile tanımlanmıştır. Öngerilme 
ile ideal olmayan sınır şartlarının dalga yayılım hızına etkisinin sayısal sonuçları sunulmuş ve tartışılmıştır. 
Anahtar Sözcükler: Burulma dalga yayılımı, ideal olmayan temas koşulları, öngerilme, bileşik silindir. 
 
 
 
1. INTRODUCTION 
 
In many cases the control of the adhesion quality in the layered materials is made through 
measurement of the acoustic wave propagation velocity in these materials. Under these 
measurement procedures it is necessary to have imformation on the corresponding theoretical 
results related to the influence of the bonded imperfection on the dispersion of these waves. In 
connection with this, the investigation carried out in the present paper which relate to the study of 
the influence of the bonded imperfection on the torsional wave dispersion in the bi-layered 
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finitely pre-strained hollow circular cylinder has significant not only in a theoretical sense but 
also in a practical sense in the corresponding branches of modern engineering. 
The subject of the papers [1–2] is the investigation of the dispersion relations of the torsional 
waves in a pre-stressed compounded cylinder.  

The torsional wave propagation in the compounded cylinder (without initial stresses) 
with an imperfect interface is studied in paper [4]. In [5] the investigations carried out in the 
papers [1,3] are developed for the case where the contact condition on the interface surface is 
imperfect. As in [4], the imperfectness of the contact condition is formulated according to the 
model used in [6]. Moreover, in the present paper, as in [1,3], the mathematical formulations of 
the corresponding eigen-value problems are made within the scope of the piecewise homogenous 
body model with the use of the equations and relations of the TLTEWISB. It is assumed that the 
elasticity relations of the cylinders’ materials are given through the Murnaghan Potential [7].  

In these works it is assumed that the initial strains in the constituents are small and 
these strains are calculated within the scope of the classical linear theory of elasticity. The results 
of the investigations can be employed only for the compounded cylinders made from stiff 
materials. But these results are not suitable for the compounded cylinders fabricated from the 
high elastic materials such as elastomers, various type polymers and etc. Therefore in present 
paper attempt is made for the development of the investigations carried out in the papers [1,3] for 
the hollow compound cylinder made from high elastic materials, in other words for the case 
where the initial strains in the components of the cylinder are finite ones and the magnitude of 
those are not restricted. In this case, as in [3], it is assumed that in each component of the 
compounded cylinder there exists only the homogenous normal stress acting on the areas which 
are perpendicular to the lying direction of the cylinders. The mechanical relations of the materials 
of the cylinders are described through the harmonic potential in the papers [13] and [14].  

As in paper [5], in this study the influence of the imperfectness of the contact condition 
on the torsional wave propagation in the initially stressed (stretched) compounded circular 
cylinder is investigated. But, as in papers [13] and [14] mechanical relations of the materials of 
the cylinders are described through the harmonic potential instead of the Murnaghan Potential. 
 
2. FORMULATION OF THE PROBLEM 
 
We consider the compound (composite) circular cylinder shown in Fig. 1 and assume that in the 
initial state the radius of the internal circle of the inner hollow cylinder is R  and the thickness of 

the inner and outer cylinders are )1(h  and )2(h , respectively. In the initial state we determine the 
position of the points of the cylinders by the Lagrangian coordinates in the cylindrical system of 
coordinates Orqz.  

 

 
 

Figure 1. The geometry of the bi-material compound hollow cylinder. 
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Assume that the cylinders have infinite length in the direction of the Oz  axis and the 
initial stress state in each component of the considered body is axisymmetric with respect to this 
axis and homogeneous. With the initial state of the cylinders we associate the Lagrangian 
cylindrical system of coordinates zqrO  . The values related to the inner and external hollow 

cylinders will be denoted by the upper indices (1) and (2), respectively. Furthermore, we denote 
the values related to the initial state by an additional upper index, 0. Thus, the initial strain state 
in the inner and external hollow cylinders can be determined as follows. 

 

( ),0 ( )( 1)k k
m m mu yl= -          

( ) ( ) ( )
1 2 3

k k kl l l= ¹
         

( )k
m constl =  1,2,3m   1,2k =           (1)   

  

where  0),(k
mu  is a displacement and )(k

ml is the elongation along the axis. We introduce 

the following notation: 
 

( )' k
i i iy yl=           

( )
1' kr rl=

          
(2)
1'R Rl=

                   (2) 
 

The values related to the system of the coordinates associated with the initial state 
below, i.e. with zqrO   will be denoted by upper prime.  

Within this framework, we investigate the axisymmetric torsional wave propagation 
along the O z   axis in the considered body by the use of the following field equations.  

The equation of motion is: 
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The elasticity relations are: 
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In (3) and (4) through the )(' k
qrQ  and )(' k

zqQ   are the perturbation of the components of 

Kirchhoff stress tensors. )(' k
qu is the perturbation of the components of the displacement vector. 

 ’s are the constants  determined through the mechanical constants of the inner and outer  

cylinders’ materials and through the initial stress state. )(' k  is the density. 

Green’s strain tensors with the displacement vector u  in the cylindrical coordinates 
system are: 
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Using the expression (1) and (5) we obtain the following initial strains: 
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According to the expression (6), the following relations can be written: 
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Consider the definition of the stress and strain tensors in the large elastic deformation 
theory. For this purpose we use the Lagrange coordinates r, q and z in the cylindrical system of 
coordinates Orqz.  

Consider the determination of the Kirchhoff stress tensor. The use of various types of 
stress tensors in the large (finite) elastic deformation theory is connected with the reference of the 
components of these tensors to the unit area of the relevant surface elements in the deformed or 
un-deformed state. This is because, in contrast to the linear theory of elasticity, in the finite 
elastic deformation theory, the difference between the areas of the surface elements taken before 
and after deformation must be accounted for in the derivation of the equation of motion and 
under satisfaction of the boundary conditions. According to the aim of the present investigation, 
we here consider two types of stress tensors denoted by q~  and s~ the components of which refer 

to the unit area of the relevant surface elements in the un-deformed state, but which act on the 
surface elements in the deformed state. The physical components )(ijS of the stress tensor s~ are 

determined through the strain energy potential ( , ,....., )rr qq qz      by the use of the 

following expression: 
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Elasticity relationship of cylinders is expressed by the harmonic potential as in [12]. 
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In relations (8), (9) and (10),   and   are material constants and i are the principal 

values of Green’s strain tensor. 
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Using the expression (9) and (10) we obtain the following expression for the strain 
energy potential in the initial state: 
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Using (10) and (11) we obtain the following expressions for the stresses in the initial 
state: 
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The stress tensor q~ is called the Kirchhoff stress tensor. Using kirchhoff stress tensor 

in the initial state we obtain: 
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Torsional wave propagation in the compound hollow cylinder will be investigated by 
the use of Eqs. (3), (4) and (13) as in [13].  

The imperfectness of the contact conditions is identified by discontinuities of the 
displacements and forces across the mentioned interface. A review of the mathematical modeling 
of the various type incomplete contact conditions for elastodynamics problems has been detailed 
in a paper by Martin [8]. It follows from this paper that for most models the discontinuity of the 

displacement u  and force f  vectors on one side of the interface are assumed to be linearly 

related to the displacement u  and force f  vectors on the other side of the interface. This 

statement, as in the paper by Rokhlin and Wang [9], can be presented as follows: 
 

    DfCuf ,  
  FfGuu ,                               (14) 

 

where C, D, G and F are three-dimensional (3 x 3) matrices and the square brackets 
indicate a jump in the corresponding quantity across the interface. Consequently, if the interface 
is at  
 

1r R h  , then 
 

 
1 10 0r R h r R hu u u                         

1 10 0r R h r R hf f f       ,                                        (15) 
 

It follows from (14) that we can write incomplete contact conditions for various 
particular cases by the selection of the matrices C, D, G and F. One of such selections was made 
in the paper by Jones and Whitter [6], according to which, it is assumed that C = D = G = 0. In 
this case it is obtained from (14) that 
 

  0f ,   
 Ffu                    (16) 

 

where F is a constant diagonal matrix. The model (16) simplifies significantly the 
solution procedure of the corresponding problems and is adequate sufficiently with many real 
cases. Therefore, this model (i.e. the model (16)) has been used in many investigations carried 
out by [4], [5], [6], [10], [11], and [15]. According to this statement, we also use the model (16) 
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for the mathematical formulation of the incomplete contact conditions which can be written for 
the problem under consideration as follows: 
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The parameter F in (17) characterizes the shear-sprıng type imperfectness between the 
cylinders under consideration. 0F  determines continuous contact condition and 0F 
determines imperfect contact condition. In this paper, the influence of this parameter  F on the 
dispersion curves are investigated.   
 
3. SOLUTION PROCEDURE AND OBTAINING THE DISPERSION RELATION 
 
As we assume that the harmonic torsional wave propagates along the Oz  axis, we can 
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It follows from the problem statement that the presentation 
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The solution to the equation (22) can be written as follows. 
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Using the equations (4), (18), (21), (24) and (25) we obtain the following dispersion 
equation from the condition (17). 
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Thus, the dispersion equation for the considered torsional wave propagation problem 
has been derived in the form presented in (27). 
 
4. NUMERICAL RESULTS AND DISCUSSIONS 
 
We have found that the first lowest mode which is non-dispersive homogenous hollow cylinder, 
becomes dispersive for a compound one. The limiting value of the torsional wave speed for the 
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case considered is determined from dispersion equation (26), (27) by using power series 
expansions of Bessel functions, retaining only the dominant term as  0R k : 
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Where 
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In the case where (m)
3λ =

(m)
2λ =1.0,  the expression (28) transforms to the following 

one. 
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Moreover, the expression (28) is a generalization of the corresponding one attained in 
the paper [1] for the finite initial strain state. Note that in the paper [1] this type expression was 
obtained for the small initial strain state. 

It follows from the expression (28) and (20) that the limit values of (1)
2c/c , where 

)1()1((1)
2 /c  decrease with (2)(1) / and increase with )( )2(

3
)1(

3    Consequently, 

the initial stretching (compression) of the compound cylinder along the torsional wave 
propagation direction causes to increase (to decrease) of the limit velocity of this wave as 

0kR . According to the known physical-mechanical consideration, the other limit value of the 
velocity of the considered wave, i.e. the limit velocity as kR  must be equal to min

 )(),( )2(
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2  cc ,i.e. the following relation must be hold. 
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2  ccc   as kR                        (31) 

 

Accuracy of the algorithms used in the considered problem for a similar situation in the 

[13] paper has proven. Thereafter, (1)
2c/c  and kR have been studied. 
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Figure 2. The influence of the parameter F on dispersion curves under varios Rh /)1( . 
 

Assuming that the inner cylinder is harder material 2/ )2()1(   and there is no 

pretensioning in both cylinder 1)2(
3

)1(
3   , together with the change in thicknesses the 

influence of the parameter F was investigated in Fig. 2 and Fig 3. 

 As seen in Fig. 2 wave propagation velocity decreases with the increase of Rh /)1(  and 
in parallel with the increase in the value of the contacting simulating F wave propagation speed is 

relatively decreases. In figure 3, with the decrease of Rh /)2( , wave propagation velocity and the 
influence of the parameter F  increases.        
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Figure 3. The influence of the parameter F on dispersion curves under varios Rh /)2( . 
 

 
 

Figure 4. The influence of the parameter F on dispersion curves under higher varios )2()1( / . 
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Figure 5. The influence of the parameter F on dispersion curves under lower varios )2()1( / . 
 

Assuming that cylinder thickness were the same 1.0// )2()1(  RhRh  and there is 

no pretensioning in both cylinder 1)2(
3

)1(
3   , together with the change in hardnesses the 

influence of the parameter F was investigated in Fig. 4 and Fig 5.  With the hardening of the 
both inner and outer cylinder, the influence of the parameter F decreases. In the case where 

0kR , the limit velocity of the wave propagation is the same and independent of the parameter 
F . Effects of parameter F decreases with kR. Finally, we note that the wave propagation 

velocity approch to the  )2()1( ,min RR cc  as kR , where )2,1()( mc m
R

is a Rayleigh wave 

velocity of the m-th material. 
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a)                                                                    b) 

 
     c) 

 

Figure 6. The influence of the parameter F  on dispersion curves under varios values of the 

initial strains. a) 1.0// )2()1(  RhRh  b)  2.0// )2()1(  RhRh   c) 3.0// )2()1(  RhRh  
 

The influence of the parameter F  on dispersion curves under varios values of the 
initial strains and thickness were investigated in Fig. 6. We see that with the growing of values of 
the initial strains the influence of the parameter F becomes more prominent. With the increase of 
the thickness the influence of the parameter F decreases. 
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Figure 7. The influence of the parameter F on dispersion curves. 
 

Fig. 7 shows that the imperfectness of the contact condition causes the velocity of the 
wave propagation to reduce. Note that similar results are also obtained in papers [4] and [5].  
 
5. CONCLUSION 
 

Wave propagation velocity decreases with the increase of (1) /h R  and in parallel with the 
increase in the value of the contacting simulating F , wave propagation speed is relatively 

decreases. With the decrease of (2) /h R , wave propagation velocity and the influence of the 
parameter  increases. With the hardening of the both inner and outer cylinder, the influence of the 
parameter F  decreases. With the growing of values of the initial strains, the influence of the 
parameter F  becomes more prominent. The imperfectness of the contact condition causes the 
velocity of the wave propagation to reduce. 

According to the foregoing results, it can be concluded that the considered type 
imperfection causes to decrease of the wave propagation velocity and the initial stretching acts 
significantly not only the wave propagation velocity, but also the magnitude of the mentioned 
influence of the imperfection of the contact on this velocity. 
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