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ABSTRACT

Using fuzzy aggregation operators, compensatory fuzzy approaches can be proposed for multi-objective
problems. The variety of operators for the aggregation of objectives might be confusing and might make it
difficult to decide which one to apply to the problem. For example while Zimmermann’s “min” operator
provides numerical efficiency, it does not guarantee compensatory and Pareto-optimality. In this paper, we
present brief information about some important compensatory fuzzy aggregation operators and then apply
them to the Multi-objective Linear Transportation Problem (MOLTP) to obtain a compensatory compromise
Pareto-optimal solution set. And an illustrative example is provided to compare these aggregation operators
and to conclude which operator is more appropriate for the concerning problem.

Keywords: Transportation problem, multi-objective programming, fuzzy aggregation operators, fuzzy
mathematical programming.

BAZI BULANIK BIRLESTIRME OPERATORLERININ COK AMACLI LINEER TASIMA
PROBLEMI iCiN KULLANILMASI

OZET

Bulanik operatorler kullanilarak, ¢ok amagh problemler i¢in dengeleyici bulanik yaklagimlar iiretilmektedir.
Amaglarin birlestirilmesi igin kullanilan bu operatorlerin ¢esitliligi kafa karistirici olabilir ve probleme
hangisinin uygulanacag: kararmin verilmesini giiglestirebilir. Ornegin Zimmermann’in “min” operatdrii
sayisal hesaplamalarda kolaylik saglarken, dengeleyici olma ozelligini ve Pareto-optimalligi garanti
etmemektedir. Calismamizda, bazi 6nemli bulanik birlestirme operatorleri hakkinda temel bilgi sunularak, bu
operatorler dengeleyici uzlasik Pareto-optimal ¢6ziim kiimesini elde etmek amaciyla ¢ok amagl lineer tasima
problemine uygulanmistir. Ayrica bu birlestirme operatorlerini karsilastirmak amaciyla sayisal bir 6rnek
verilmis ve ele alinan problem i¢in hangi operatoriin uygun oldugu hakkinda sonuglar vurgulanmustir.
Anahtar Sozciikler: Tagima problemi, ¢ok amagl programlama, bulanik birlestirme operatdrleri, bulanik
matematiksel programlama.

1. INTRODUCTION

Transportation Problem (TP) has wide practical applications in logistic systems, manpower
planning, personnel allocation, inventory control, production planning, etc. and aims to find the
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best way to fulfill the demand of n demand points using the capacities of m supply points. In
many real-life situations, decisions are often made in the presence of multiple, conflicting,
incommensurate objectives. Thus, MOLTP becomes more useful and includes objectives such as
distribution cost, quantity of goods delivered, unfulfilled demand, average delivery time of the
commodities, reliability of transportation, accessibility to the users, product deterioration, etc.

After Lee and Moore [1] studied the optimization of transportation problems with
multiple objectives, Diaz [2, 3] and Isermann [4] proposed procedures to generate all non-
dominated solutions to the MOLTP. Current et al. [5, 6] did a review of multi-objective design of
transportation networks. Climaco et al. [7] and Ringuest et al. [8] developed interactive
algorithms for the MOLTP. Bit et al. [9] presented an additive fuzzy programming model for the
MOLTP. Some solution procedures for MOLTP where the cost coefficients of the objective
functions, and the source and destination parameters expressed as interval values by the decision
maker are proposed by Das et al. [10] and Ahlatcioglu et al. [11]. Li and Lai [12] and Wahed [13]
proposed a fuzzy compromise programming approach to MOTP. Basing on extension principle,
Liu and Kao [14] developed a procedure to derive the fuzzy objective value of the fuzzy
transportation problem where the cost coefficients, supply and demand quantities are fuzzy
numbers. Using signed distance ranking, defuzzification by signed distance, interval-valued
fuzzy sets and statistical data, Chiang [15] get the transportation problem in the fuzzy sense.
Ammar and Youness [16] examined the solution of multi objective TP which has fuzzy cost,
source and destination parameters. They introduced the concepts of fuzzy efficient and
parametric efficient solutions. And Barough [17] presented a two stage procedure for fuzzy
transportation problem in which the cost coefficients and supply and demand quantities are fuzzy
numbers. Ojha et al. [18] formulated single and multi-objective transportation models with fuzzy
relations under the fuzzy logic. In that paper, the parameters of models are stated by verbal words
such as ‘very high’, ‘high’, ‘medium’, ‘low’ and ‘very low’. And both models are solved with
Real coded Genetic Algorithms. Gupta and Kumar [19] is proposed a new method to find
solution of a MOLTP by representing all the parameters as interval-valued fuzzy numbers. Ojha
et al. [20] introduced the modified subgradient method for optimization and its effectiveness in a
fuzzy transportation model. Here a multi-item balanced transportation problem is formulated
where unit transportation costs, available spaces and budgets at destinations are imprecise.

In the most of these notable studies from the literature, Zimmermann’s “min” operator
is used to aggregate the multiple objectives. And as far as we know, the efficiency of the
aggregation operators for the solution of MOLTP has not been studied yet. So, in this paper,
using some important fuzzy aggregation operators, we present some compensatory fuzzy
approaches to MOLTP. By means of a numerical example, we also conclude which operator is
more appropriate for the concerning problem.

This paper is organized as follows. Next section provides brief information about
compensatory fuzzy aggregation operators. Section 3 explains our methodology using Werners’
compensatory “fuzzy and’’ and “fuzzy or’’ operator, Modified Zimmermann’s convex
combination of the min- and max-operators, Lai and Hwang’s augmented max—min operator.
Section 4 gives an illustrative numerical example. Finally, Section 5 and Section 6 include the
comparison results and conclusion.

2. COMPENSATORY FUZZY AGGREGATION OPERATORS

The variety of operators for the aggregation of fuzzy sets might be confusing and might make it
difficult to decide which one to use in a specific model or situation. Zimmermann [21] proposed
the following eight rules to justify a suitable operator for a particular fuzzy decision problem.
Criteria for selecting appropriate aggregation operators are axiomatic strength, empirical fit,
adaptability, numerical efficiency, compensation, range of compensation, aggregating behavior,
required scale level of membership functions.
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The most important aspect in the fuzzy approach is the compensatory or non-
compensatory nature of the aggregate operator. By compensation [21], in the context of
aggregation operators for two fuzzy sets, it means that the following: given that the degree of

membership to the aggregated fuzzy set is Moo (xk) = Z(,u;1 (xk),,ué (xk )) =k.z is
compensatory if [, - (x k) =k is obtainable for a different Hy (xk) by a change in

My (xk ) . Several investigators [21, 22, 23, 24] have discussed this aspect.

Using the linear membership function, Zimmermann proposed the “min’’ operator
model to the multi-objective linear programming problems [25]. It is usually used due to its easy
computation. Although the “min’’ operator method has been proven to have several nice
properties [21], the solution generated by min operator does not guarantee compensatory and
Pareto-optimal [26, 27, 28]. The biggest disadvantage of the aggregation operator “min’’ is that it
is non-compensatory. In other words, the results obtained by the “min’’ operator represent the
worst situation and cannot be compensated by other members which may be very good. On the
other hand, the decision modeled with maximum operator is called fully compensatory in the
sense that it achieves the full satisfaction of a single goal.

As a result of experiment made by Zimmermann and Zysno [29], most of the decisions
taken in the real world are neither non-compensatory (min operator) nor fully compensatory. So,
these operators do not seem to be very suitable for modeling the real world problems in many
situations. To overcome this difficulty Zimmermann and Zysno [29] have suggested a class of
hybrid operators called compensatory operator with the help of a suitable parameter of
compensation J . They showed that the “ ¥ — operator (or “compensatory and’’ operator)’” is

LRI LEINT LRI

more adequate in human decision making than operators “min’’, “product’’, “max’’, “weighted
geometric mean’’. But it is a nonlinear operator and increases the computational difficulties
tremendously.

A computationally efficient compensatory operator is Luhandjula’s compensatory min-

bounded sum operator: L, = 7/mjn M+ (1 —j/)min I,Z,ui is presented to solve
1 .
1
Multi-objective Linear Programming (MOLP) problem [21]. Unfortunately, it is difficult to
determine the compensatory coefficient ) . The solution generated by min-bounded sum

operator is not necessarily efficient. However, it is an attractive one from the standpoint of
computational efficiency. In order to overcome this drawback, Li [22] proposed a two-phase
approach to overcome this difficulty. As a matter of fact, the first phase is to use Zimmermann’s
approach. If the possible solution is unique in phase one, it will be a Pareto-optimal solution.
Otherwise, in phase two, a new program will be formulated to maximize the arithmetic mean
value of all memberships restricted by original constraints and constraints comes from phase one.
Obviously, phase two yields an efficient solution because of full compensation of the
“averaging’’ operator. Chen and Chou [30] proposed a fuzzy approach to integrate the min
operator, average operator and two-phase methods. Guu and Wu [31] proposed a similar two-
phase model for fuzzy linear programming problem to improve the dominated solution yielded
by min operator. To the case of MOLP, Lee and Li [27] associated a two-phase approach with
(& — cut to treat the possibilistic distributions of fuzzy coefficients. Wu and Guu [28] proposed a
simplified two-phase model for MOLP to yield a fuzzy efficient solution between non-
compensatory (“min’’ operator) and full compensatory (average operator). Tiryaki [32] proposed
interactive compensatory fuzzy programming for decentralized multi-level linear programming
problems to obtain a preferred compensatory compromise Pareto-optimal solution.
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In this paper, we will use Werners’ compensatory “fuzzy and’’ operator and show that
the solutions generated by this operator do guarantee Pareto-optimality for our MOLTP problem.
And also we will compare this operator with the following other computationally efficient
compensatory fuzzy aggregation operators.

Let us introduce these operators, where 0< H; <1, i= 1,2,...,m and the
magnitude of ¥ € [0, 1] represent the grade of compensation.

Werners’ compensatory “fuzzy and’® and “fuzzy or’ operators: Based on the ) — operator,

Werners [33] introduced the compensatory “fuzzy and’’ and “fuzzy or’’ operators which are the
convex combinations of min and arithmetical mean, and max and arithmetical mean,
respectively:

Mo =7 0 (11,) + Zu, , )

#, =y max(s,)+ Zﬂl : @)

Although these operators are not inductive and associative, they are commutative,
idempotent, strictly monotonic increasing (and decreasing, respectively) in each component,

continuous and compensatory. Obviously, when J =1, these equations reduce to

Hona = min and M, =Mmax, respectively. The combination of these two operators forms
the generalized “and’’ and “or’” operators.

Modified Zimmermann’s convex combination of the min- and max-operators: This
compensatory operator is modified by Lai and Hwang and a modified version of Zimmermann
and Zysno’s ) — operator [22]:

My =}/mjnyi+(1—y)max;ti. 3)
l 1
Lai and Hwang’s augmented max—min operator [22]:
Hp = min H T 52 H; s 4)
! i

where O s a sufficiently small positive number. As seen, the augmented max—min

2. <

operator is an extension of Zimmermann’s “min’’ operator.
3. USING SOME FUZZY AGGREGATION OPERATORS FOR MOLTP

The mathematical model of the MOLTP can be written as follows:

min Fk(x) ZZCU X, k=12,....K, 5)

i=l j=1
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s.t.: ley =a, i=12,...,m,
=

ini :bj, j=12,...,n,
i1

Vx; 20, i=L2,....m; j=12,...,n.

X is decision variable which refers to product quantity that transported from supply

point 7 to demand point j. &,,d,,...,d,, and blabza-”abn are M supply and 72 demand
quantities, respectively. K is the number of the objective functions of MOLTP. C;{. is unit
transportation cost from supply point i to demand point ; for the objective
k,(k=12,...K).

Without loss of generality, we assume that

a, > O(Vi), bj > O(Vj), Cl.]; >0 (V(i, J) ) andza,. = ij (Balance condition).
i J

Now, in the context of multi-objective, let us give the definitions of efficient or non-
dominated or Pareto-optimal solutions for MOLTP. These are used instead of the optimal
solution concept in a single objective transportation problem.

Definition 3.1. (Pareto-optimal Solution for MOLTP). Let S be the feasible region of (5).

x" €S issaidtobea Pareto-optimal (strongly-efficient) solution if and only if there does not

exist another X € S such that F* (x)< F* (x*) for all & and F* (x) # F* (x*) for at
least one k, where x* = {xij} .
Definition 3.2. (Compromise solution for MOLTP) A feasible solution X €8 is called a

compromise solution of (5) if and only if X €E and Fk(X*)S A F(X) where
xeS

F(X) = (FI(X),FZ(X),. ces Fk(X)) , A stands for “min” operator and £ is the set of
Pareto-optimal solutions of MOLTP.

3.1. Constructing the Membership Functions of Objectives

The membership functions of the objectives will be defined to apply our approach. Let Lk and

U  be the lower and upper bounds of the objective function F* , respectively. In the literature,

there are two common ways of determining these bounds ([21]). The first way: Solve the
MOLTP as a single objective TP using each time only one objective and ignoring all others.
Determine the corresponding values for every objective at each solution derived. And find the

best (Lk) and the worst (Uk) values corresponding to the set of solutions. And the second
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way: By solving 2K single-objective TP, the lower and upper bounds Lk and U ¢ can also be
determined for each objective F* (X) ,k=12,...,K asfollows:
L, =min F*(x), U, =max F*(x), 6)

xeS§ xe§
Here, we note that (6) will be used for determining the lower and upper bounds of
objectives. Also for the sake of simplicity, in this paper we used the linear membership function:

1, Ff<L,
U, -F*
0, FF>U,.

Here, L, #U,, k=1,2,...,K and in the case of L, =U, /Jk(Fk(X)) =1.
The membership function £, (F k) is linear and strictly monotone decreasing for F’ k in the

interval [Lk , Uk ] .
Using Zimmermann’s minimum operator ([25]), MOLTP can be written as:
max mkin u, (F*(x)) ®
X

s.t. xeds.

By introducing an auxiliary variable A, (8) can be transformed into the following
equivalent conventional linear programming problem:

max A
sit. w(Fr(xN=4, k=1,.,K )
xeS ., 1€[0,1].

Here, we note that (9) is the “min” operator model for MOLTP, and also a nonlinear
programming model. Its optimal objective value denotes the maximizing value of the least
satisfaction level among all objectives of MOLTP. And it can also be interpreted as the “most
basic satisfaction” that each objective in the transportation system can attain.

Now, we can construct the compensatory models with fuzzy aggregation operators for
MOLTP as follows:

3.2. Werners’ Compensatory “fuzzy and” Operator for MOLTP

It is pointed out that Zimmermann’s min operator model doesn’t always yield a Pareto-optimal

solution [26, 27, 28]. By using Werners® L, operator ((1)), (9) is converted to:

max,uand=/”t+(1;<7/)(ﬂ1 A et Ay (10)

s.t. xes§,
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e (F(x))2 2+ 4, .
A+4 <1,

AN el01], k=12,..,K
y€[0,1].

So, our compensatory model generates compensatory compromise Pareto-optimal
solutions for MOLTP.
We shall give this assertion in the following theorem.

Theorem: If (X,XX) is an optimal solution of problem (10), then X is a Pareto-optimal

solution for MOLTP, where A" = (/1’( , /%X , /12" eees /11’; )

Proof: The theorem can be proven similarly to ones in [32].
If required, Pareto-optimality test ([34]) can also be applied to the solutions of (10) and
it could be seen that these solutions are Pareto-optimal for MOLTP.

3.3. Werners’ Compensatory “fuzzy or” Operator for MOLTP

By using Werners’ [ . operator ((2)), (9) is converted to as follows:

=y
K

max . =o (o, +a,+..+ay)

s.t. xes,
w(FH(x))=a-a, Vik=12,..K

M, (Fk (X))Za,foratleastone ke{l,Z,...,K}
0<a, <a<l, Vk=12,..,K

y €[0,1]
or
1—
rnax,uorza—( Ky)(a1+a2+...+a,<), (1n
s.t. xes,

w(Fr(x))za-a, . Vk=12,..K.
a—-a, <1.Vk=12,.,K,
w(FH(x))+Mr2a Vk=12,..K.

K

E}kSK—L

k=1

0<g, <a<l, Vk=12,.,K,
r,e{0,1}, Vk=12,....K
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y €[0,1].

Objective function of (11) maximizes the linear combination of the level of
satisfaction of the most satisfied objective (max operator) and the level of satisfaction average
satisfied objective.

3.4. Modified Zimmermann’s Convex Combination of the min- and max-operators for
MOLTP

With modified Zimmermann’s convex combination of the min- and max-operators
: k k

Hp =y min g4, (F (x)) +(1- y)m?x 7 (F (x)) ,

our MOLTP becomes

max{;/ min 4, (Fk (x)) +(1 —;/)m]?x 1, (Fk (x))}

xes§

or

max {yar, +(1-7)a, |

st (FH(x))2e. VE=12,...K

y7A (Fk (X))Z Q, , for at least one k€{1,2,...,K}

xeS, a,a, E[O,l]

or

max {ya, +(1-7)a, ) (12)
st w(F (x))2a,. Vk=12,....K .

o (FH(x))+ Mr, 2 a,. Vk=1,2,....K .

K
> n<K-1,
k=1

xeS. a,a,€[0,1].
n€{0,1},Vk=12,... K

where M is a very large real number.

The objective function of (12) maximizes the linear combination of the level of
satisfaction of the less satisfied objective (min operator) and the level of satisfaction of the most
satistied objective (max operator).

3.5. Lai and Hwang’s Augmented max—min Operator for MOLTP

Using (4), the modified Lai and Hwang’s augmented max-min operator for MOLTP must be

Hp = min 4, (Fk (x))+5Zk:yk (Fk (x))
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Taking min H (Fk (X)) =1 , our MOLTP becomes
k

max £, = max {/1+5 ;ﬂk (F* (X))}

st (FH(x))2 4. Vk=12,....K.

xes§.

(13)

3.6. A Hybrid Approach of Werners’ and Lai-Hwang’s Operators for MOLTP

If we use min Hy (Fk (X)) == H (Fk (X)) =1 +ﬂ,k by Werners’ sense and
k

combine it with Lai-Hwang’s augmented max-min operator, our MOLTP will become

K
max {(1+5)/1+5Z/1k} (14)
k=1

st (FM(x)2A+4,. Vk=12,. K.
A+, <1.Vk=12,...K
xes.

4. AN ILLUSTRATIVE EXAMPLE

Let us consider a multiple-objective transportation problem with the following characteristics:
Supplies: @, =5, a, :4, a, :2, a, =9,
Demands: bl =4, b2 24, b3 26, b4 22, b5 =4,

9 12 9 6 9 2 9 8 1 4 2 46 3 6
Penalties: C' = 73T TS C? = 19952 C? = 48 492
6 5 9 11 3 8 1 8 4 5 53536
6 8 11 2 2 2 8 6 9 8 6 9 6 3 1

The lower and upper bounds of the objectives that we obtained to define the
membership functions of the objectives are shown in Table 1.

Table 1. Bound values of objectives

Fl F2 F3

Ly 102 72 | 64

U | 188 | 157 | 136
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From Table 1, the membership functions are obtained as follows:

188—F'(x) 188—F'(x)

x =
() 188—102 86
157-F*(x) 157-F*(x
()= o) _ o),
157-72 85
C136-F3(x) 136 F(x)
Y -

4.1. Werners’ Compensatory “fuzzy and” Operator for the Example

Using (10), our compensatory problem will be in the form as follows:

X

() Z A+ A, 1 (X)2 A+ 4, 1(x) 2 A+ 4,

2485004 4 2)

i=l1 i=

1
>20,1=1,2,3,4. j=1,2,3,4,5,

A+A4 <, A+4, <1, A+ 4, <],
A, A, Ay, A, 2 0.

By solving (15), the results for different 11 values of the compensation parameter )

1 xeS

=
4 4
an =6, ) x, = 2’in5 =4,

(15)

with 0.1 increment are obtained and given in Table 2(a) and Table 2(b). The results are: the

. . L . k
compensation satisfactory level 4, , the values of objective functions F (k =12, 3) ; the

satisfactory levels of the objectives corresponding to solution X, (i.e. the values of membership

functions) L4, (k =1, 2, 3) ; the most basic satisfactory level A ; respectively.

As it can be seen from Table 2(a) and Table 2(b), our compensatory model generates

. . . . 1* 2% 3 .
the following compensatory compromise Pareto-optimal solutions X , X~ and X~ for this
example.

408



Sigma 32, 399-421, 2014

i- ..

Using Some Fuzzy Aggregation Operators for Mult

Table 2(a). The results of our compensatory model with £ ..
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¥SOL'0 ¥S0L0 ¥S0L0 ¥S0L0 ¥S0L0 ¥S0L'0 ¥S0L0 ¥SOL'0 | 660L°0 LYILO ozeLo | Mn
1=4 6'0=A4 8'0=A4 Lo=A4 90=A4 §0=A4 v'0=A4 €0=4 To=A 0=~ 0=A4
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Table 2(b). The results of our compensatory model with £, .
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30020
. 102200 \ .
For y=0= X" = L F'(X")=127. F?(X")=104,
02000
1 0 40 4
F*(x")=7e.
30 0 2 0
. |0 2 1542 0 04580
For y=0.1 ad y=02 =X =
02 0 0 0
1 0 44580 0 3.5420

[}

F'(X*")=130.2060, F*(X*")=99.8780, F*(X*")="77.3740.
15242 0 14758 2 0
0 2 0.8984 0 1.1016
O 2 0 0 0
24758 0 3.6258 0 2.8984
F'(X*)=127.3320, F?(X)=97.0370, F* (X )=852080.
All of these solutions pointed out that the certainly transported amounts are:
{‘le = X5 =Xy =Xy = Xy = Xay =Xy = Xas =Xy =X, =0, }

Xy =Xy =Xy =2.

From =03 to }/=1.0:>X3*:

And also, the least transported amount are:

x,, 21.5242, x,, > 0.8984,
X, 21

X,; >3.6258,x,, > 2.8984

For y =0, Hana €quals to average operator (full-compensatory) operator that is
1 .
Hopa = Inll’lgz,uk (Fk (X)) =0.7220 and gives the solution X", The satisfactory
k=1

level of the transportation system for our MOLTP is averagely 0.7220.

For y =1, Hoa  €quals to min (non-compensatory) operator that is

Howa = rnkin My (Fk (X)) =0.7054 and gives the solution X3*. This solution remains
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the same from y = 0.3 to Yy = 1. As seen the minimal satisfactory level of all objectives is

equal to 0.7054 .

4.2. Werners’ Compensatory “fuzzy or” Operator for the Example

Using (11), our compensatory problem will be in the form as follows:

(I-9)
3

max i, = o — (o, +a,+ay), (16)

s.t. xes,
mx)za—-a, p(x)za—a,, p(x)za-a;,
a-a<l,a-a,<l,a-a, <],
,ul(x)+Mr1 za, ,uz(x)+Mr2 >a, ,u3(x)+Mr2 2a,
A+ <2,
0<g, <a<l, k=123,
r,e{0,1}, k=1,2,3,
7 €[0.1].
By solving (16), the results for different 11 values of the compensation parameter

with 0.1 increment are obtained and given in Table 3(a) and Table 3(b).
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Table 3(a). The results of our compensatory model with £/ .

I I I I I I I I 0 £€8°0 €€8°0 0
I ¥769°0 #%69°0 #7690 ¥769°0 #7690 ¥769°0 #7690 LSO €€€8°0 £€€8°0 e
811t°0 I I I I I I I €970 $€79°0 S€T9°0 e
6L29°0 $09€°0 $09€°0 $09€°0 $09€°0 $09€°0 $09€°0 $09€°0 TL6°0 €60L°0 €60L°0 I
9 98 98 98 98 98 98 98 99 9L 9L e
(44| L (4 L (4 L (4 L €21 Y01 01 o
vl LS1 LS1 LS1 LS1 LS1 LS1 LS1 LT1 LTl LTI o
0’1 896°0 L£6°0 $06°0 YL8'0 ws'0 1180 6LL0 0SL0 €€L°0 TTLo o
1=4 6'0=A 8'0=A4 Lo=A 9°0=A4 §0=A4 v'0=A4 €0=A4 To=A4 10=4 0=A
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Table 3(b). The results of our compensatory model with £/ ..

—
Il o (o] (=] (=] (=] — (=] o (=} (=} (=} N (=} (=} (=} (=} (=} e} N <
~
)
T o (=] (=] N (=] (=] (=] (=] (=} < (=} N (=} (=} (=} — (o} o (=} (=}
B
*®
? o f=} (=} N (=} (=} (=} (=} (=] <+ (=] (o] (=] (=] (=) — [q\] N (=) (=)
~
=
<H> o f=} (=} N (=} (=} (=} (=} (=] <t (=] N (=] (=] (=) — (o] O (=) (=)
~
2
? o (= (=] N (=] (=] (=] (=] (=} < (=} (9] (=} (=} (=} — (o] =} (=} (=}
B
it}
T o (=] (=] N (=] (=] (=] (=] (=} < (=} N (=} (=} (=} — (o} o (=} (=}
e
=
? o f=} (=} N (=} (=} (=} (=} (=] <+ (=] (o] (=] (=] (=) — [q\] N (=) (=)
~
«@
<H> o f=} (=} N (=} (=} (=} (=} (=] <t (=] N (=] (=] (=) — (o] O (=) (=)
~
N
? < — (=] (=] (=] (=] — o (=} (=} (=} (9] (=} (=} (=} (=} (=} e} [g\] <
B
-
T o (=] (=] N (=] (=] N N (=} (=} (=} N (=} (=} (=} — (=} < (=} <
e
f=}
Il o f=} (=} (o] (=} (=} (o] (o] (=] (=] (=] [a\] (=] (=] (=) — (=) < (=) <
e
= al| o 2| w» | al «af 2| o =| a| «| 2| 2| =| ol «| =z| =
— — — — — o1 ol ! & o Ll Ll e el el ~ <t =t = =t
R R R| R| R R| R| R| R| R| R| R R| R| R| R R| R| x|
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Table 4(a). The results of our compensatory model with Modified Zimmermann’s convex

combination of the min- and max-operators.

0 S0L°0 S0L'0 S0L'0 €€8°0 1280 £v6'0 €6°0 0001 886°0 000'T @
S0L0 S0L0 S0L0 S0L0 799°0 S€9°0 95570 9550 [0 ¥67°0 0 0
¥SOL'0 | ¥SOLO | ¥SOL'0 | ¥SOLO | €€€8°0 | 9€90 1£76°0 €760 0001 0 7769°0 &
¥SOL'0 | ¥SOLO | ¥SOL'0 | ¥SOLO | 61990 | 9v€9°0 | 9SS0 | ¥9SSO | 8IIF0 17620 0001 e
$SOL'0 | ¥SOLO | ¥SOL0 | ¥SOLO | 61990 | 0I1T80 | +9SS0 | #9SSO | 6LT90 | #8860 | S09€0 I
807T'S8 | 80TS8 | 80TS8 807'S8 9L TIE06 | 66089 | 66089 9 00T 98 o
LEO'L6 | LEOL6 | LEOL6 | LEOL6 | 6EL00T | €90°€0T | #0L'6OT | 0L 60T (44 (431 (43 o
TECLTL | TEELTL | TEECLTL | TEELTL | LLOIEL | S6ELIL | 8yI'OFL | 8FI0VL el €01 LST s
SOL'0 S0L°0 S0L'0 S0L'0 0€L°0 8TL°0 88L°0 LT8°0 788°0 6160 000’1 an
=4 60=~ 80=4 Lo=4 90=4 s0=4 o=~ €0=A4 To=4 10=4 0=~
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Table 4(b). The results of our compensatory model with Modified Zimmermann’s convex
combination of the min- and max-operators.

—lzl.]¢e INE clolslolz
I n|lo|lg|la|lolo|la|lw|lo|l=|lo|lalolo|lo|g|oloclo]| x
| = — 1= — I I3e) I
g <+ © % N © © o0
; Do |G |lalolo|la|B|clS|lc|laloleclec|S ||l
~ — — =] — o o o
g < © % o © © o0
N Dl |S|lalolc|la|B|clS|lc|lalolclec|S ||l
Slalale 2.8 elol8lo]%
N Alo|S|lalo|lc|la|B|clS|lc|laloleclc|S ||l
NG — — (=] — o on o™
\D. wy wy wy wy
ﬁ n|lo|lo|lalo|m|la|B|locloc|lc|lalololcec|Z |||l
4 S - S <
2 o — — o
YRR Sloc|8|lc|R|oc|lo|lc|la|lo|lo|oleo|as| 8|5«
N - i - <+ |
Sle Slolg]olt g
YR Qlc|8|lc|S|locloclc|lalo|loleclc|lao| 8|5«
1= = i - < |
N
T on o (=} (=} (=} — (=} o [=] [=] [=] o f=} f=} (=} (=} (=} o o <
NG
—
? (=) (=) wy (=) (=) (=) o — [=] [=] f=] — [=] [=] — < (=) (=) o™ o
~
S
flon|o|lo|la|lo|lo|lo|o|lo|st|o|alo|le|le|~|alv|o]|o
~
| al o =| w| =] a| « | «| =| al «f 2| 2| =| a| «| 2| =
— — — — — o1 o1 ! 1 ol Gas] Lae} Las] G Gl ~ <t <t < <t
x x x x x x x x x x = = = = = R R| R| R| X

4.3. Modified Zimmermann’s Convex Combination of the min- and max-operators for the
Example

Using (12), our compensatory problem will be in the form as follows:
max{y/ozl +(1-7)a,} (17)
s.t. xes,
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h(x)Za,, w(x) 2 a,, w(x)2a,

y72 (x)+Mrl >a,, ,uz(x)Jer2 2a,, ,u3(x)+Mr2 za,,
n+r+r<2,

a,,a, €[0,1],

7, e{O,l}, k=123

where M is a very large real number.
The results of (17) are given in Table 4(a) and Table 4(b).

4.4. Lai and Hwang’s Augmented max—min Operator for the Example
Using (13), our compensatory problem will be in the form as follows:
max g, = max {/1 +6 (44 () + 1, (X) + 1 (x))}

s.t. m(x)22, 1 (x)24, 1, (x)241,

xes§.

where & =107 . The results of (18) are given in Table 5.

(18)

Table 5. The results of our compensatory model with Lai and Hwang’s augmented max—min

operator for the example

o=10"
luD 0.705 xl | 1.524 x24 0 x42 0
Fl 127.332 X, 0 Xy 1.102 X5 3.626
F2 97.037 X, 1.476 X, 0 Xy 0
F3 85.208 x14 2 x32 2 x45 2.898
0.7054 0 0
My Xis X33
1, 0.7054 X, 0 Xy, 0
0.7054 2 0
Hy X5y X35
A 0.705 X, 0.898 X, 2.476

4.5. A Hybrid Approach of Werners’ and Lai-Hwang’s Operators for the Example

Using (14), our compensatory problem will be in the form as follows:

max {(1+6) A+ 5 (4 +4,+4,)}
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st ()2 At A, (1) 2 At Ay, g (x) 2 A+,
A+ALL A+ 4, <1, A+ 4, <],

xesS

A, A2, 4, 20.

where & =107 . The results of (19) are given in Table 6.
Remark: All solutions are obtained by using the GAMS computer package.

Table 6. The results of our compensatory model with hybrid approach of Werners’ and Lai-
Hwang’s operators for MOLTP

o=10"
7 0.705 X, 1.524 Xy 0 Xy 0
Fl 127.332 X 0 X 1.102 X 3.626
12 25 3
FZ 97.037 x13 1.476 x31 0 x44 0
F3 85.208 X 2 X 2 X 2.898
14 3 45
1 0.7054 X 0 X 0
| 15 33
y7A 0.7054 X, 0 Xy, 0
0.7054 2 0
Hy X9 X35
0.705 0.898 2.476
A X3 X4

5. COMPARISON RESULTS
Among several various operators, we selected and used Werners’ LI, , operator as a suitable

one for MOLTP, basing on Zimmermann’s eight rules to justify a suitable operator [21]. These
reasons can be given such as: Adaptability: this operator is dependent on the context and the
semantic interpretation; that is it models a decision problem which is MOLTP. Thus our
proposed fuzzy compensatory method aids the decision maker to get a suitable decision
according to the situation, Numerical efficiency: this operator is computationally efficient;

Compensation: this operator has compensation if a change in a member of £/, can be
counteracted by a change in an another member of it; Range of resulting membership: the larger

the range of resulting membership the better the operator, for example, in Werners’ [ .

operator, A . =0.7054 for ¥ =1 (it means “min’* operator), Hona =0.7220 for

Yy = 0 (it means “average’’ operator). Although modified Zimmermann’s approach gives the
larger the range of resulting membership, that is, £, € [07054, 1] but it does not guarantee

to get Pareto-optimal solution. Although using Werners” [/ . operator, the range of resulting
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membership is M, € [07220,1] but while this operator satisfies the full satisfaction of at
least one objective, some others’ satisfactions may be zero. Whereas Werners’ t{ ., operator

does also guarantee the least degree of satisfactions among all objectives. For this reason, £/
operator is not appropriate for MOLTP. Lai and Hwang’s augmented max—min operator

generates a unique Pareto-optimal solution near to the “min’’ operator because O is sufficiently

small positive number, whereas Werners’ [/, operator has more Pareto-optimal solution

variety dependent on . And the hybrid of Werners’ (£, , and augmented max-min operators
also generates a unique Pareto-optimal solution similar to augmented max—min operators’ one.

Therefore, (L, , operator enables us to choose a compromise solution in a wider set. The

compromise solution is both compensatory and Pareto optimal. Using ([ , operator, our

method achieves the compromise solution for MOLTP in an only one-phase instead of afore
mentioned two phase approaches [24]. And we also gave a theorem that the compensatory
solution generated by this operator does guarantee Pareto-optimality for our MOLTP.

6. CONCLUSIONS

As known, the solution techniques of MOLTP are often encountered in the literature. It is quite
useful using the fuzzy techniques from the point of view efficiency and simplicity. In the
literature, it is mostly used Zimmermann’s min operator to aggregate multiple objectives.
However, it is known that this operator does not guarantee to generate the Pareto-optimal
solutions [26, 27, 28]. In this paper, we presented brief information about Werners’
compensatory “fuzzy and’’ and “fuzzy or’’ operators, Modified Zimmermann’s convex
combination of the min- and max-operators, Lai and Hwang’s augmented max—min operator.
And we applied them to the MOLTP to obtain a compensatory compromise Pareto-optimal
solution set. And an illustrative numerical example is provided to compare these aggregation
operators. To investigate the effect of different degrees of compensation, 11 cases with different

values of compensations were solved. Among these operators, we conclude that Werners® 4,

operator as a suitable one for MOLTP, basing on Zimmermann’s eight rules to justify a suitable
operator [21].
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