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1. Preliminaries

Let M and T be additive Abelian groups. M is said to be a I'-ring in the sense of Barnes|2] if there
exists a mapping M x I' x M — M satisfying these two conditions for all a,b,c € M, o, 8 € T":

(1) (a+b) ac = aac + bac
ala+ B)c = aac+ afic
aa (b+ ¢) = aab + aac

(2) (aad) Bec = aa (bfc)

In addition, if there exists a mapping I' x M x I' — I' such that the following axioms hold for all
a,b,ce M, a,B €T

(3) (aad) Be=a(abB)c
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~-Lie structures with derivations

(4) aab =0 for all a,b € M implies o = 0, where o € T

then M is called a T'-ring in the sense of Nobusawa[l0]. If a I'-ring M in the sense of Barnes satisfies
only the condition (3), then it is called weak Nobusawa I'-ring[9].

Let M be a I'-ring in the sense of Barnes. Then M is said to be a prime gamma ring if aI’'MTH =0
with a,b € M implies either a = 0 or b = 0[2]. It is also defined in [2] that M is a completely prime
gamma ring if al'b = 0 with a,b € M implies either a = 0 or b = 0.

For a subset U of M and v € T, the set C, (U) = {a € M | ayu = wya, Yu € U} and the set
C, ={a € M | aym = m~ya, Ym € M} are called y-center of the subset U and ~-center of M respectively.

In 2000, Kandamar|7] firstly introduced the notion of a k-derivation for a gamma ring in the sense
of Barnes and proved some of its properties and commutativity conditions for Nobusawa gamma rings.

Commutativity conditions with derivations for a gamma ring has been investigated by a number of
authors. In [8], Khan, Chaudhry and Javaid proved that if M is a prime gamma ring (in the sense of
Barnes) of characteristic not 2, I is a nonzero ideal of M and f is a generalized derivation on M, then M
is a commutative gamma ring. In [12], Suliman and Majeed showed a nonzero Lie ideal of a 2-torsion-free
prime I'-ring M with a nonzero derivation d is central if d(U) is contained in the center of M.

In this paper, we define y-Lie ideal for a weak Nobusawa gamma ring and show that if U ¢ C.,
charM# 2 and d® # 0, then the vy-subring generated by d(U) contains a nonzero ideal of M. We also
prove that if [u, d(u)], € C, for all w € U, then U C C., when charM # 2 or 3. And if [u,d(u)], € C, for
all w € U and U is also a ~y-subring, then U is y-commutative when charM = 2.

2. ~-Lie ideals and derivations

Now we give some new definitions and make some preliminary remarks we need later.

Let M be a weak Nobusawa I'-ring and 0 # v € I'. A subgroup I of M is said to be a y-subring
if zyy € I for all z,y € I. A subgroup A of M is said to be a 7-left ideal(resp. ~-right ideal) if
mya € A(resp. aym € A) for all m € M, a € A. If A is both ~-left and ~-right ideal then A is called a
vy-ideal of M.

M is called y-commutative gamma ring if xyy = yyz for all x,y € M.

We say that the additive subgroup U of M is said to be a v-Lie ideal of M if [U, M], C U. We also
say that if there exists a v € I" such that ayM~b = 0 with a,b € M implies either a = 0 or b = 0 then M
is called a 7y-prime gamma ring.

An element a of M is called y-nilpotent if there exists a positive integer n such that a2} := (ay)"a = 0.

In what follows, let M be a ~-prime weak Nobusawa I'-ring of characteristic not 2, d # 0 be a
k-derivation of M such that k () = 0 and U be a 7-Lie ideal of M unless otherwise specified.

Lemma 2.1. If a € M ~y-commutes with [a, x]ﬁf for all x € M, then a is in the y-center of M.
Proof.  Let z,y € M. Therefore, we get [a,z], v[a,y|, = 0 by hypothesis. Replacing y by myz with
m € M, we obtain [a, x]7 yM~ [a, x]w = 0. Hence, a is in the -center of M since M is y-prime. O

Lemma 2.2. Suppose that U # (0) is both a y-subring and a y-Lie ideal of M. Then either U C C., or
U contains a nonzero ideal of M.

Proof. First, suppose that the y-subring U is not y-commutative. Then, there exists x,y € U such
that [z,y], # 0. Since U is a y-Lie ideal, [z,y], yM C U. Hence, {[m,y]vva,b} € U for all a,b € M.
vy

Expanding this, we get by [z,y], va € U leading to M~ [z,y], vM C U. Moreover, M~ [z,y], vM # 0.
We have shown that the result is correct if the y-subring U is not commutative.
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Now suppose that U is y-commutative. Then [a, [a, z] 'v} =0 for a € U and « € M. Therefore, we
v
have U C C, by Lemma 2.1. 0

Lemma 2.3. Let U be a ~y-Lie ideal of M and U € C... Then there exists a nonzero ideal K of M such
that [K, M|, C U but [K,M] ¢ C,.

Proof. Since U ¢ C,, it follows from Lemma 2.1 that [U, U]v #0. Let K = M~|[U, U]nyM. Then it
is clear that K is a nonzero ideal of M.

Let T (U) = {Jc €M :[z,M], C U}. Then, it can be shown that U C T (U) and T (U) is both a
~-subring and a v-Lie ideal of M. Let u,v € U such that [u, v],y =# 0. Replacing v by vym with m € M,
we obtain [u,v], yM C T (U). Hence, [[u,v],y'ym,nL € T (U) for all m,n € M. Expanding this, we get
K C T (U). Therefore, we have shown that [K, M], C U.

Suppose that [K, M]v C C,. Then, {x, [m,m]w} =0foral x e K, me M. Let y € M. Since

N
K C C, by Lemma 2.1, we have [y,nykym], = 0 for all m,n € M,k € K which leads to y € C,,. But
this contradicts with U ¢ C.,. O

Lemma 2.4. Letu e M. Ifa € C, and ayu € Cy, then a =0 oru € C,.

Proof.  Suppose that a # 0. Since [ayu,m], = 0 for all m € M, we get a7y [u,m], = 0. Replacing m
by myn with n € M, we obtain [u, n],y =0 for all n € M. This gives that u € C,. O

Lemma 2.5. If U is a y-Lie ideal of M and U ¢ C.,, then C(U) = C,,.

Proof. 1t is clear that C., (U) is both a y-subring and v-Lie ideal of M. We claim that C, (U) cannot
contain a nonzero ideal of M. Suppose K is a nonzero ideal of M which is contained in C (U). Then,
it is clear that [u, kﬂym]w =0forallue U, k€ K and m € M. Expanding this, we get kvy [u,m]w =0.
Replacing k by kym with m € M, we obtain u € C', which leads to a contradiction. Hence, C, (U) C C,
by Lemma 2.2. O

Lemma 2.6. If U is a y-Lie ideal of M, then C, ([U, U]w) =C, (D).

Proof. First, suppose that [U, U]A/ ¢ C,. Since [U, U]7 is a y-Lie ideal of M, we have C,, ([U7 U]v) =,
by Lemma 2.5. Now, suppose that [U, U]v C Cy. Let a = {u, [u,x]v} for u € U and x € M. Since
¥

a € C, and ayu € C, we write a = 0 or u € C, by Lemma 2.4. If a = 0, we have v € C,, by Lemma 2.1.
Hence, we get U C C,. Thus, C, ([U, U]v) =C, (U). O

Lemma 2.7. Let U be a y-Lie ideal of M and U ¢ C,. If ayUvb =0 for a,b € M, then a =0 orb=0.

Proof. There exists a nonzero ideal K of M such that [K,M] C U but [K,M] ¢ C, by Lemma
2.3. Thus, avy [kyayu, m},y'yb =0foru e U, k€ K and m € M by hypothesis. Expanding this, we get
ayK~ayM~U~b = 0. Since M is ~-prime, we obtain ayK~vya =0 or Uvb = 0. Let ayK~va = 0. If a # 0,
then we have K = 0 which is a contradiction. Now, let U~b = 0. Therefore, [u, m]ﬁf vb =0 for all u € U
and m € M. Hence, we get UyM~b = 0 which means b = 0. O

Lemma 2.8. If d is a k-derivation of M such that k (y) =0 and d*> = 0, then d = 0.

Proof. Since d? (z7yy) = 0 for all z,y € M, we have d (z) vd (y) = 0. Replacing y by m~yx with m € M,
we get d () yM~d (x) =0 for all z € M. Thus, d = 0 since M is y-prime. O
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Lemma 2.9. If d # 0 is a k-derivation of M such that k(y) =0, then C (d(M)) = C,.

Proof. Let a € C, (d(M)) and suppose a ¢ C,. Thus, [a,d (2yy)], = 0 for all 2,y € M. Expanding
this, we get d (z) v [a,y], + [a, 2], vd (y) = 0. If y € M ~-commutes with a, then [a,y], = 0. So the last
equation reduces to [a, z], yd (y) = 0 for all z € M. Then, d (y) = 0 since a ¢ C,. Indeed, if d (y) # 0, we
get a € C,. But this is a contradiction. Therefore, d (y) = 0 for all y € C (a). Thus, d = 0 by Lemma
2.8 which contradicts with the assumption. O

Lemma 2.10. Let d # 0 be a k-derivation of M such that k() =0 and U be a ~y-Lie ideal of M.

(i) If d(U) =0, then U C C.,.
(ii) If d (U) C C,, then U C C,,.

Proof. (i) Let w € U and € M. Since d (u) = d ([u,x],y) = 0 by hypothesis, we get [u,d (z)], =0
for all x € M. Therefore, u centralizes d (M). Then, we get U C C, by Lemma 2.9.

(i) Suppose that U € C,,. Then, V = [U,U] ¢ C, by proof of Lemma 2.6. Since d ([u,v]w) =0
for all u,v € U, we get d (V) = 0. It follows that V' C C,, by (i). But this is a contradiction. O

Lemma 2.11. Let d be a k-derivation of M such that k (v) =0 and U be a y-Lie ideal of M such that
UZC,. Iftyd(U) =0 (or d(U)yt =0) fort € M, thent =0.

Proof. Let uw € U and x € M. Using the fact [u, 2], yu = [u,zyu], € U, we have tyd ([u,x],y 'yu> =0.
Expanding this, we get ¢y [u,z] yd (u) = 0 for all z € M andu € U. Replacing z by d (v) vy with v € U,
y € M, we obtain tyuyd (v) = 0 for all v,u € U since tyd (U) = 0 and M is y-prime. Hence, t = 0 by
Lemma 2.7. O

Theorem 2.12. Let d # 0 be a k-derivation of M such that k() = 0. If U is a vy-Lie ideal of M such
that d*> (U) = 0, then U C C,,.

Proof. Suppose that U ¢ C,. By proof of Lemma 2.6, we have V = [U, U]ﬂ{ ¢ C.,. There exists a
nonzero ideal K of M such that [K, M] C U but [K, M], ¢ C, by Lemma 2.3. Let y € M, t € [K, M,

and u € V. If w := d(u), then d (w) = 0. By hypothesis, d? ([t’yw,y]v) = 0. Expanding this, we have
d(t)vd ([w,y]ﬂ) =0foralte[K,M] ,y€Mwed(V). Since [K,M] isa ~-Lie ideal of M and

(K, M]., & C.,, we have d ([d (V) ’M]v) = 0 by Lemma 2.11. Expanding last equation, we conclude that

[d(u),d(x)], =0forall z € M,u €V which means d (V') C C, (d (M)). Therefore, we have V' C C, by
Lemma 2.9 and by Lemma 2.10. But this is a contradiction. O

Theorem 2.13. Let d # 0 be a k-derivation of M such that k (v) = 0. If U is a y-Lie ideal of M such
that U € C., then Cy (d(U)) = C,.

Proof. Let a € C, (d(U)) and suppose that a ¢ C.. We have V = [U,U], ¢ C, by proof of Lemma
2.6. Since d(V) C U and a € C, (d(U)) we get ayd® (u) = d?(u)~ya and ayd (u) = d(u)~ya. Now,
applying given derivation d to last equation gives d (a) € Cy (d(V)). Since a € C, (d(U)), v € V and
V' is a 7-Lie ideal, we have [d (a),ul, = d ([a,u]v) € d(V). It follows that [d(a),V], = 0 which means
d(a) € C, (V). Therefore, d(a) € C, (V) = Cy by Lemma 2.5.

Using same process for the element aya gives d (aya) = 2avd (a) € C,, since aya € C, (d (U)). Thus,
d(a) = 0 by Lemma 2.4. Therefore, if d(b) # 0 for any b € C, (d(U)) we have b € C,. So we get
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a+be C, since d (a+ ) d (b) # 0. Then we have a € C,. But this is a contradiction. Consequently,
when we suppose C, (d(U)) € C., we are forced to d(a) =0 for all a € C, (d (U)).

Let W = {& € M | d(z) =0}. Then we have C, (d(U)) C W. Moreover, d ([a,u]7

acCy(dU))andueU.
There exists a nonzero ideal K of M such that [K,M] C U but [K,M] ¢ C, by Lemma 2.3.
Ift € [K,M], C UNK, then tya € K. Thus, [a,d([tva,u]v)} = 0. Expanding this, we get
2l

) = 0 for any

dt)y [a, [a,u],y} =0 forallt € [K,M] ,u € U. Hence, [a, [a, U},y} = 0 by Lemma 2.11. Since
gl v
U ¢ C,, we have a € C,, (U). Therefore, a € C,, by Lemma 2.5. But this is a contradiction. O

Lemma 2.14. If d® # 0 and U ¢ C.,, then d (M) the vy-subring generated by d (M) contains a nonzero
~v-ideal of M.

Proof. Since d? (d(M)) # 0, we have y € d (M) C d (M) such that d? (y) # 0. Thus, we get M~d (y) C
d (M) since d (zyy) and d (z) vy in d (M) for all 2 € M. Similarly, d (y)yM C d (M). If we act d to the
element ayd (y) vb for a,b € M, we get ayd? (y) vb € d (M) by above, that is to say M~d? (y)yM C d (M).
We also have M~yd? (y) C d (M) and d? (y) yM C d (M) by above. Therefore, the y-ideal of M generated
by d? (y) # 0 contained in d (M). O

Lemma 2.15. Let d®* #0, U ¢ C, and V = [U, Ul,. If d(V)) contains a nonzero left ideal A of M and
a nonzero right ideal p of M, then d (U) contains a nonzero ideal of M.

Proof. Since d (V) C U, we have d(d(V)) € d(U). Let a € A C d(V) and 2 € M. Thus, d(zva) €
(U). Expanding this, we get 2vd (a) € d(U) for all z € M and a € X. Therefore, we have M~d (\) C
d(U). Similarly, d(p)yM C d(U). Let a € XA and u € V. If we act d to the element [a,u

(a)yu € d (U) by above, that is to say d (A) vV C d(U). Similarly, Vvd (p) C d (U).

Let I = AyV~yp. Then by Lemma 2.7, I is a nonzero ideal of M. Moreover, d (I) C d (U). By Lemma
2.14, d (I) contains a nonzero vy-ideal K of I since d* # 0 and I is y-prime. Let S := AyK~p. Then S is
an ideal of M which is contained in d (U). O

],y, we get

Lemma 2.16. Let 0% I < M and U ¢ C.,. If d(U) does not contain a nonzero right ideal(or left ideal)
of M and [c, 1], C d(U) then c € C,.

Proof. Lett € d(U) and i € I. Then [c,tyi], € d(U) by hypothesis. Expanding this, we get
[e,d(U)], I € d (U). But, since d (U) does not contain a nonzero right ideal of M, we get [c, d(U)],vI =

0. Thus, [¢,d(U)], = 0 since 0 # I < M and M is a y-prime gamma ring. Then by Theorem 2. 13 we
getceC(()):Cﬂ,. O

Lemma 2.17. Let U € C,, V = [U, U], and W = [V, V] . If &®> (U)~vd? (U) = 0 then d® (W) = 0.
Proof. By proof of Lemma 2.6, V and W are not contained in C,, since U ¢ C.,. Also, we have d (W) C
0

Vandd? (W) Cd(V) CU. IfueU,v €V and w € W, then we have d? (u )7d2<[d( ), d? (w )
for any t € U. Expanding this, we get

& (u) yd (v) 5 (d* (w) 7t + 20 (w) 7dl (1)) = 0 M)

by hypothesis. In (1), if we choose t € d (V) C U, it follows d? (u)~vd (
we have d? (u) vd (v) vd* (w) = 0 by Lemma 2.11. Then we get from (1

v) vd* (w) vt = 0 for such t. Thus,
) that d (u) 7d (6) v (1) 7. (£) =

29
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0 for all t € U. By Lemma 2.11, we conclude that d? (u)~yd (v)yd? (w) = 0 for all w € U, v € V and
w € W. Similarly, we have d® (w)vd (v) vd? (u) = 0 by reversing sides.

By hypothesis, d? (d(t))yd? ([v,d(w)h) = 0 for w,t € W and v € V. Expanding this, we get

d3 (t) yvyd® (w) = 0 that is to say d® (t) yV~d® (w) = 0 for all w,t € W. It follows that d® (W) = 0 by
Lemma 2.7. O

Lemma 2.18. IfU ¢ C., and d* (U) =0 then d®> = 0.

Proof. Letu €U and m € M. Then we have d° ([u, m]v) = 0. Expanding this, we get

3[d? (u),d (m)], +3[d(u), d? (m)] + [u, d? (m)], = 0. (2)
Let V = [U,U], and W = [V, V] _. In (2), replacing u by d? (w) with w € W, we get [d* (w) , d® m)LY =0
by hypothesis. Again replacing u by d (w) and m by d (m) in (2), we obtain [d (w),d* (m)],Y =0.

By proof of Lemma 2.6, W ¢ C.,. Thus, by Theorem 2.13, C., (d (W)) = C,. Since [d (w),d* (m)] =
0 for all w € W and m € M, it follows d* (M) C C,.

By hypothesis, d* ([u,m].) = 0 for u € U and m € M. Expanding this, we get
v

6 [d* (u),d” (m)h +4[d(u),d (m)]W =0 (3)

since d* (m) € C.,. Similarly, expanding the equation d3 ([u, d (m)] ,y) =0, we get

3[d (u),d* (m)] | +3[d(u),d’ (m)] =0. (4)
Combining the equation (4) and the equation (3) we get [d (u),d? (m)]v =0 for all u € U and m € M.
Therefore, by Theorem 2.13, d® (M) C C, (d (U)) = C.,. Hence, we get d® (m)vd? (u) € C., that is to say
d* (M) ~yd* (U) € Cy.

Suppose that d® (M) # 0. By Lemma 2.4, we have d? (U) C C.,. Since d* (mvd (u)) € C, it follows
d*(M)~d(U) C C,. Since d(U) cannot be contained in C., by Lemma 2.10, we get d* (M) = 0 by
Lemma 2.4. So d* (mvd (u)) = 4d® (m)~vd? (u) = 0. Hence, d® (M)~d? (U) = 0. On the other hand, we
have d? (U) # 0 by Theorem 2.12. Since d* (U) C C, and M is y-prime gamma ring, d* (M) = 0, that is
to say d* = 0. O

Lemma 2.19. If [U,U], C C, then U C C,.

Proof. Let [U, U]7 = 0. Then, we get [u, [u,z],y} =0 for all u € U and x € M by hypothesis.
v
Therefore, u € Cy by Lemma 2.1.

Now, let [U,U], # 0. Then, there exist u,v € U such that [u,v], # 0. Let d(z) = [z,v], for
x € M. Then d*(z) = [d(z),v], € C, for all z € M by hypothesis. Let a = d(u) and b = d*(z).
Therefore, d?(uyx) = 2ayd(z) + byu € C,. Then we have [u,2avd(x) + byu], = 0. Expanding this,
we get 2av [u, d(x)]v = 0 for all z € M. Replacing = by uyv in the last equation, we obtain ai = 0.

Therefore, we have a nonzero vy-nilpotent element a in the y-center of the «-prime gamma ring M. But
this is a contradiction. O

Lemma 2.20. Let M be a gamma ring of characteristic not 2 and U be a y-Lie ideal of M. If [u,d(u)],, €
C, and u* € U for allu € U, then [, d(u)], = 0.
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Proof. We know that [u+ u?, d(u+ u2)]’y € C, for all uw € U by hypothesis. Expanding this, we get
4[u,d(u)], yu € C,. Hence, [u,d(u)], v [u,m], =0 for all u € U and m € M. Replacing m by myz with
x € M, we obtain [u,d(u)], ym~y [u, 2], = 0 that leads to [u,d(u)], =0 or [u,z], =0 for all z € M since
M is y-prime gamma ring. 0

Lemma 2.21. Let U be a y-Lie ideal of M and [u,d(u)]., € C, for allu € U. Then {[d(m), ul, ,u] e Cy
vy

for allu € U and m € M. Moreover, if [u,d(u)], =0 for all u € U, then [[d(m),uh ,u} =0 for all
gl
ueU andme M.

Proof. Let u € U and m € M. By hypothesis, [u + [u,m], ,d(u+ [u,m]v)} € C,. Expanding this,
¥

we get v
[l d(w)]

+ [u, [d(u),m]ﬂ{} + [u, [u,d(m)],y] e C,.

ol Y v

But for any v € U and m € M one can show that

[[u,m]wd(u)} +[u,[d(u),m]7} :{m,[d(u),u]v} = 0.

Y Y Y

Therefore, we get desired result. Similary, the other statement can easily be shown. O
Lemma 2.22. Leta € M. If ayd(z) =0 for allz € M, then a =0 or d = 0.

Proof. By hypothesis, ayd(zyy) = 0 for all x,y € M. Expanding this, we get ayzyd(y) = 0 for all
x,y € M. Since M is ~y-prime gamma ring we have the desired result. O

3. Main results

Theorem 3.1. Let M be a y-prime weak Nobusawa I'-ring of characteristic not 2 and d be a k-derivation
of M such that k (y) =0 and d* # 0. If U is a y-Lie ideal of M such that U ¢ C., then d (U) contains a
nonzero ideal of M.

Proof. Let V =[U, U], and W = [V, V] . According to Lemma 2.15, it is enough to show that the

~-subring d (V) contains a nonzero left ideal of M and a nonzero right ideal of M. Suppose that d (V)
does not contain a nonzero right ideal of M.

Let w € [W, W] and a := d(w). Since ay[a,z], € W, we have d (a’y [a,$]7> € d(W). Expanding
this, we get

d(a)vla,z], €d(V),Vaed ([W, W]v) ,ze M. (5)

On the other hand, since d ([a,u},y) €d(V) and [a,d(u)], € d(V) for u € V, we have

Cd(V),Vaed ([W, W]V> . (6)

N =

[d(a),V]
For m € M we also have

d(a)v[d(a),m], +d(a)v[a,d(m)], € d(V)
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since d (a)vyd ([a,m],y) € d (V). Hence, by (5)

d(a)~[d(a),m], € d(V), Va e d ([W, W]W) m e M. (7)

In (7) replacing a by a + b with a, b € d ([W, W]v) we obtain

s::d(a)’y[d(b),m]w—I—d(b)'y[d(a),m}vEd(V),Va,bEd([VV,W]W).

Ift:=[d(a)yd (b),m], = d(a)y[d(b),m], + [d(a),m], vd(b) then

s—t=d)y[d(a),m], ~[d(@),m],1d () = [4(0),ld (@), m],] .

By (6), s —t € d(V). Thus, we get t € d(V), that is [d(a)yd (b),M] C d (V). Since d (V) does not

e
contain a nonzero right ideal of M, d(a)yd(b) € C, for all a,b € d ([W, W], ) by Lemma 2.16. Let
)7 [b,z], € d(V) since

¥
n = d(a)yd(b). By (5), d(b)y[b,z], € d(V). Tt follows nvy b, z], = d(a)yd(

d(a) € d(V). On the other hand, since ny[b,z], = [b,nyz], € d(V), we have [b,nyM] C d(V). Let
I =nyM. If I # 0, then b € C, for all b € d([VV, W]n{) by Lemma 2.16. Thus, by Lemma 2.10
we get [W, W] C C, that is to say U C C, by Lemma 2.19. But this is a contradiction. Therefore,

I=nyM =0. Sowe get n=d(a)yd(b) =0 for all a,b € d ([VV, W]w> since M is y-prime gamma ring.

— O N —

That is, d? ([VV, 124 7) ~yd? ([VV, %4 7) = 0. Hence, we conclude that the contradiction d® = 0 by Lemma
2.17 and Lemma 2.18. O

Theorem 3.2. Let M be a gamma ring of characteristic not 2 or 8 and U be a ~y-Lie ideal of M. If
[u,d(u)]., € Cy for allu € U, then U C C,.

Proof. By Lemma 2.21 we have

(). vl u]_yu =y [[d(m) ], u]
Expanding this, we get
3u®yd(m)yu + d(m)yu® = 3uyd(m)yu® + u?yd(m). (8)
Let d(m) = m’. Replacing m by u in (8), we obtain
wdyu’ — u/yud = 3(uyu’ — u'yu)yu® (9)

for all u € U. Since [u,u'], yu = wy [u,u'] we have

2y(uyu’ — u'yu)yu = ulyu' — u'yu®. (10)
Again replacing m by uym’ in (8), we obtain
Suyu/ym/yu? + udyu'ym' — 3utyu/ym/yu — u'ym/yud = 0 (11)
for all u € U and m € M. Multiplying (8) with u’ gives
3uyuym/yu® 4+ uyudym’ — 3u/yulym/yu — uym/yud = 0.
Substracting the last equation from (11) we get

3(uyu’ — w'yu)ym'yu? + (WPyu’ — u'yu)ym’ — 3(uPyu’ — u'yu?)ym/yu = 0.
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Using the equations (9) and (10) we conclude
(uy — u'yu)y(m/yu? + u?ym’ — 2uym/yu) =0
for all w € U and m € M. If uyu’ — w'yu # 0 for some u, then
m/yu? + u?ym’ — 2uym/yu =0 (12)
for that u. Replacing m by uym, we obtain
(u'ym 4 uym/)u? + u?y(u'ym + uym’) — 2uy(u'ym + uym’) = 0.
Expanding last equation, we have
uymyu? + ulyuym — 2uyu/ymyu = 0 (13)
for all m € M. If we replace m by v in (12) and multiply by m on the right, then we get
w'yulym + u?yu'ym — 2uyu' yuym = 0. (14)
Substracting (14) from (13) gives
' y(myu? — uPym) — 2uyu'y(myu — uym) = 0. (15)
Replacing m by uym in (15), we obtain
u' yury(myu? — u?ym) — 2uyu/ yuy(myu — uym) = 0. (16)
Mulyiplying (15) by u we get
uyu'y(myu? — u?ym) — 2uPyu'y(myu — uym) = 0. (17)
Substracting (16) from (17) gives
(uy — u'yu)y(myu® — uym — 2uy(myu — uym)) = 0
for all m € M. Since M is y-prime gamma ring we have
myu?® — u?ym — 2uy(myu — uym) = 0.

Now think the inner I,,-derivation I, on M. From the last equation we write 157 = 0 that leads to
I,y = 0 by Lemma 2.8. Hence, u € C,.

So far we proved that if [u,u'], # 0 for u € U, then u € C,. Now assume that [u,v] = 0 for all
u € U. By Lemma 2.21, [[d(m),u],y ,u} =0 for all m € M and v € U. Replacing u by v + w with
gl
w € U, we obtain

u| =0. (18)

([ ul, w] -+ [[dlm),wl, u)

v
Choose v, w € U such that wyv € U. Replacing w by wyv in (18), we obtain
[w, ul v [d(m), v], + [d(m),w], v [v,u], = 0.

For any t € M and w € U the element v = [t, w] ensures the condition wyv € U. So by above we have

+[d(m).wl, 7 |[twl, u] =0 (19)

[w, u]v v {d(m), i2 w]V} v

~y
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for all t,m € M and u,w € U. Replacing u by w, we obtain

(d(m)wl, y [, w] =o0. (20)

Replacing ¢ by tyd(a) with a € M, we obtain
[d(m),w], 7 [t,w], y[d(a), w], =0 (21)

for all m,t,a € M and w € U. Replacing u by [¢, w]y in (19), we get{[t,w]7 ,w] 5 [[t,w]wd(m)] =0.
v
If we replace t by ¢t + d(a) we get

[l w] o [[d@), vl dom)] =0 (22)

for all m,t,a € M and w € U. Replacing ¢ by d(t)ys with s € M in (22), we obtain
[d(t), w], v [s, w], vd(m)y[d(a),w], =0
for all m,t,a,s € M and w € U.
Replacing ¢ by tyd(s) in (21), we conclude
[d(m), w, vMry [d(s), w], v [d(a), w], = 0

for all m,a,s € M and w € U. Since M is ~-prime gamma ring we get [d(m),w],y = 0 or

[d(s), w]., v[d(a),w], = 0 for all m,a,s € M and w € U. If [d(m),w], =0 for all m € M and w € U,
then w € C, by Lemma 2.9, so we are done. Suppose there is a pair m € M and w € U such that
[d(m),w]., # 0. Hence, w ¢ C,, and

[d(s), w], ~[d(a), w], =0 (23)

for all a,s € M. Replacing a by byc with b,c € M in (23), we get
[d(s),w], vd(b)Y [c,w], = 0.
If we replace b by [t, w] , in this equation we have
[d(s), w], v [t, d(w)], 7 [w, ], =0

for all ¢,t,s € M and w € U. Replacing ¢ by ¢ymy with m; € M, we obtain

[d(s), w], v [t, d(w)], = 0.
Hence, replacing t by tyk with & € M in the last equation, we get d(w) € C,,.

Now suppose u € U N C,. Then d([u,a],) = 0 for all a € M. Therefore, we have d(u) € C,. Hence,
d(u) € C, for all u € U and then we get d([w,a],) € C, for all @ € M. Expanding this, we obtain
[w,d(a)], € Cy and replacing a by ayw, we have

[w,d(a)], yw + [w,a] vd(w) € C,,. (24)

Therefore, commuting this element by w we get
[w,[w,al,| ~d(w) =0
2l

for all @ € M. Since M is y-prime gamma ring we have {w, [w,a]v} =0 or d(w) =0 for all a € M.
v

If [w, [w,a]v] = 0, then w € C, by Lemma 2.1. But this is a contradiction. Hence, d(w) = 0 and
g
[w,d(a)], yw € C, for all a € M by (24). It follows that [d(a), w], v [w,b] =0 for a,b € M. Replacing
b by byc with ¢, we obtain [d(a),w], = 0 or [w,b], = 0. So in both cases we have w € C, which is a
contradiction. O
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Corollary 3.3. Let M be a gamma ring of characteristic 3 and U be a y-Lie ideal of M. If [u,d(u)], € C,
and u?* € U for allu € U, then U C C,.

Theorem 3.4. Let M be a gamma ring of characteristic 2 and U be a y-Lie ideal and ~y-subring of M.
If [u,d(u)], € Cy for alluw € U, then U is y-commutative.

Proof. By Lemma 2.21, |[d(m),ul., ,

u| € C, forallu € U and m € M. Hence,
¥
d(m)yu® + u?vd(m) € C, (25)
for all w € U and m € M. Then
[d(m), d(m)yu® + u2’yd(m)]7 =0

and

[u?, d(m)yu® + u’yd(m)] = 0.

5
Expanding these equations, we get
u?y(d(m))* = (d(m))*yu? (26)
and
uyd(m) = d(m)yu® (27)
respectively.

Since d(u?) = uyd(u) + d(u)yu € C, for u € U, replacing m by v + u?yv with v € U, we obtain

(u?yd(v) + d(v)'yuz)2 =0
for all u,v € U. Using ~-primeness of M we have
uyd(v) = d(v)yu? (28)

for all u,v € U by (25).
Replacing v by u + w with w € U in (28), we get

(uyw + wyu) vd(v) = d(v)y (uyw + wyu)
Replacing w by wyu, we get
(uyw + wyu) y (uyd(v) + d(v)yu) = 0
for all u,v,w € U. We conclude
(wiyw +wyui) v (uyd(u) + d(u)yu) = 0, Vu,uy, w € U

replacing u by u + u? with u; € U and taking v = u.

Hence, if [d(u),u], # 0 for some u € U, then uiyw = wyu? for all uy,w € U. Then, we have
u?y (wym + myw) = (wym + myw) yu? for all m € M and u,w € U. Expanding this, and replacing m
by m~yu, we obtain

(u27m + m’yu2) ¥ (wyu + uyw) =0
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for all u,w € U and m € M. Replacing w by [u,t]. with ¢t € M, we get
(uw?ym + myu?) v (uPyt + tyu®) =0
for all w € U and m,t € M. Again replacing ¢ by typ with p € P, we conclude u? € C,, for all u € U.
Assume that [d(u),u], = 0 for all u € U. Then, by Lemma 2.21 [[d(m),uLY ,uL =0forallueclU
and m € M. Expanding this, we get u?yd(m) = d(m)~yu®. Replacing m by m~ya with a € M, we obtain
d(m)y (u*va + ayu®) + (v*ym + myu?®) vd(a) = 0.

Replacing a by v?, we get d(m)y (u?*yv? +v?yu?) = 0 for all u,v € Um € M since d(v?) =
vyd(v) + d(v)yv = 0 for v € U. Therefore, u?>yv? = v?yu? for all u,v € U by Lemma 2.22. Hence,
u?y (vyw + wyv) = (vyw + wyv) yu? for all u,v,w € U. Replacing v by vyw in the last equation,
we have (vyw 4+ wyv)y (u*yw + wyu?) = 0. Again replacing v by [w,m]., with m € M, we obtain
(w2’ym+m7w2)7 (u27w+w7u2) = 0. That is, I2,(m)y (uz'yw—&—wwﬂ) = 0 for the inner I,:-
derivation I,z2., on M. So by Lemma 2.22, if w? ¢ C, for some w € U, then u?*yw = wyu?® for that
w. Therefore, [[u,v] . ,w] = 0 for all u,v € U. Expanding last equation and replacing v by vyw, we
obtain [v,w]yfy [w,u]y = 0 for all u,v € U. Replacing v by [w,r],y with m,t € M and u by [w,t],y, we
get (wgvm + m'wa) (wQ’yt + t'wa) = 0 for all m,t € M. Again replacing t by typ with p € M, we
conclude (wgvm + m’wa) yty (wQVp +p7w2) =0 for all p,t € M. Since M is y-prime gamma ring we
get w? € C, from the last equation. But this is a contradiction.

So far we conclude u? € C,, for all u € U. Hence, uyv + vyu € Cy and (uyv + vyu)yu € C, for all
u,v € U. Therefore, we have v € C, or uyv + vyu = 0. Then, U is y-commutative. O

If we assume that U is only ~-Lie ideal of M or only 7-subring of M, then U may not be ~-
commutative. Moreover, according to the assumptions of the theorem, the result U C C., cannot be
obtained.

Example 3.5. Let R be a noncommutative prime ring with identity. If M is the set of all matrices over
10

), I'=Msx2(R) andy= | 01 | €T, then M is a y-prime gamma ring. It
00

a b a
cd c

R of the form (

a0 a

can be shown that the subset U = {< 0b 0

) | a,b € R} of M is a y-subring but it is not a y-Lie ideal

101
010
that [u, Iny(u)]., € C for allu € U but U is not y-commutative.

of M. Define the inner IL,-derivation I,, on M with n = ( ) € M. Then it is easily verified

10
Example 3.6. Let M = {( Z) |a,b,c,d€ZQ}, ' =Msx2(Zs) andv=| 0 1 | €. Then M
00

s a y-prime gamma ring. Let U = {( (CI Z i ) | a,b,c€ Zg}. It is easily seen that U is a ~y-Lie ideal

but it is not a y-subring of M. Define the inner L,,-derivation I, on M with n = ((1) (1) é) e M.

Then it is easily verified that [u, Iny(u)], € Cy for all uw € U but U is not y-commutative.
aba 10

Example 3.7. Let M = {( c c) | a,b,¢,d € ZQ}, ' = M3x2(Z2) andy= | 0 1 | € T. Then
00

M s a y-prime gamma ring. Let U = {(Z Z Z) | a,b e Zg}. It is easily seen that U is a y-Lie
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ideal and a y-subring of M but it is not a 7y-ideal. Define the inner I,,-deriwation I, on M with

n = (1 01 € M. Then it is easily verified that [u,I,,(u)], € Cy for all w € U. Hence, U is

010
~y-commutative but cannot be contained in the y-center of M.

5
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