
467 

 

Sigma J Eng & Nat Sci 34 (3), 2016, 467-476 
 

                                                                                                                                 
 
 
 
 

Research Article / Araştırma Makalesi 
AN ALTERNATIVE APPROACH TO SOLVE THE LAD-LASSO PROBLEM 
 
 
Esra EMİROĞLU*  
 
Istanbul University, Faculty of Science, Department of Mathematics, Beyazit-ISTANBUL 
 
 
Received/Geliş: 21.03.2016   Accepted/Kabul: 30.05.2016 
 
 
ABSTRACT 
 
The least absolute deviation (LAD) regression is more robust alternative to the popular least squares (LS) 
regression whenever there are outliers in the response variable, or the errors follow a heavy-tailed 
distribution. The least absolute shrinkage and selection operator (LASSO) is a popular choice for shrinkage 
estimation and variable selection. By combining these two classical ideas, LAD-LASSO is an estimator 
which is able to perform shrinkage estimation while at the same time selecting the variables and is resistant to 
heavy-tailed distributions and outliers. The aim of this article is to reformulate LAD-LASSO problem to 
solve with the Simplex Algorithm, which is an area of Mathematical Programming. 
Keywords: Regression, LAD, LASSO, LAD-LASSO, Mathematical Programming, Simplex Algorithm. 
 
 
OPTİMİZASYON UYGULAMASI OLARAK REGRESYON PARAMETRELERİNİN TAHMİNİ 
 
ÖZ 
 
Yanıt değişkeninde aykırı değerler olduğunda ya da hatalar uzun-kuyruklu dağılımda olduğunda En Küçük 
Mutlak Sapma (Least Absolute Deviation, LAD) regresyonu popular En Küçük Kareler (Least Squares, LS) 
regresyonuna güçlü bir alternatifdir. En Küçük Mutlak Daralma ve Seçim Operatoru (Least Absolute 
Shrinkage and Selection Operator, LASSO) değişken seçimi ve parametre tahmini için populer bir seçimdir. 
Bu iki klasik yöntemin birleştirilmesiyle elde edilen En Küçük Mutlak Sapma ve En Küçük Mutlak Daralma 
ve Seçim Operatörü (Least Absolute Deviation and Least Absolute Shrinkage and Selection Operator, LAD-
LASSO) değişken seçimini ve parametre tahminini aynı anda yapabilen, uzun kuyruklu dağılımlara ve aykırı 
değerlere dirençli olan bir tahmin edicidir. Bu tezin amacı, LAD-LASSO problemini yeniden formüle etmek 
ve yeniden formüle ettiğimiz LAD-LASSO problemini Matematik Programlamanın çözüm yöntemlerinden 
Simpleks Yöntem ile çözmektir. 
Anahtar Sözcükler: LAD, LASSO, LAD-LASSO, matematik programlama simpleks yöntem. 
 
 
 
1. INTRODUCTION 
 

Regression analysis is a statistical process for estimating the relationships among variables in 
many engineering applications. It includes many techniques for modelling and analyzing several 
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variables, when the focus is on the relationship between a dependent variable and one or more 
independent variables. Let us consider the linear regression model which is described as follows; 
 

 y Xβ ε                                                                                                                           (1.1) 
 

where y  is an 1n  vector of the observations, X  is an n p  matrix of the levels of the 

regressor variables,  0 1 1, ,..., p   
β  is a 1p  vector of the unknown coefficients, 

and ε  is an 1n  vector of the random errors satisfying  E ε 0  and   2V ε І . 

In regression analysis, the most important aim is the estimation of the unknown parameters. 
The most popular method is the Least Squares (LS) method. The LS estimator is a solution to the 
problem 
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According to the Gauss-Markov theorem, the LS estimator is the best linear unbiased 

estimators of β . When the error i  are normally distributed, the LS estimator is a good 

parameter estimation procedure in the sense that it produces an estimator of the parameter vector 

β  that has good statistical properties (Montgomery et al., 2001). On the other hand, there are 

many situations where the distribution of the errors is nonnormal. In case of nonnormal 
distributions, particularly heavy-tailed distributions, the LS estimator no longer has these 
desirable properties. These heavy-tailed distributions tend to generate outliers, and these outliers 
may have an improper effect on the LS estimates (Montgomery et al., 2001).  

Another important problem of regression analysis is multicollinearity. When there are near-
linear dependencies among the regressors, the problem of multicollinearity occurs. For 
multicollinearity, several alternative estimation techniques are proposed, but Ridge regression 
estimator, proposed by Hoerl and Kennard (1970), is one of the most widely used estimators.  

The Ridge regression estimator ˆ
R  is a solution to the problem 
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which makes explicit the size constraint on the parameters. Another point of view, ridge 
coefficients minimize a penalized residual sum of squares, 
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where 0k   is a complexity parameter that controls the amount of shrinkage: the larger the 
value of k, the greater the amount of shrinkage. There is a one-to-one correspondence between 
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the parameters k in (1.4) and s in (1.3) (Friedman et al., 2001). Writing the criterion in (1.4) in 
matrix form, the ridge regression solutions are easily seen to be 
 

  1ˆ 0R k k
    β X X І X y                                                                              (1.5)  

 

where I  is the p p  identity matrix. Note that when 0k  , the ridge estimator is the LS 

estimator (Montgomery et al., 2001). 
When there are outliers, robust regression methods, which are more powerful than the LS 

method, are recommended as alternatives (Huber, 1981). One of these robust estimation methods 
is the Least Absolute Deviation (LAD) method, where the regression parameters are estimated 
through the minimizing of the sum of absolute value of the errors as follows 
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                                                                                                   (1.6) 

 

In applications, one can frequently face with x-space and/or y-space outliers in the data sets. 
It is known that the LS estimator is unsuccessful in producing a reliable result under these 
circumstances, and that the LAD estimator is better in the case of y-space outliers (Arslan, 2011). 
However, there are some difficulties present in the calculations as the number of regressor 
increases. 

Variable selection is another important subject in regression analysis. A large number of 
regressors are usually introduced at the initial stage of the regression model to decrease possible 
modelling biases. However, including unnecessary regressors can reduce the efficiency of the 
resulting estimation procedure and yields less accurate predictions. On the other hand, omitting 
important regressors may produce biased parameter estimates and prediction results. Therefore, 
selecting the significant regressors is an important task of regression analysis. 

The problem of selecting a model under suitable conditions for the remainder is studied 
extensively in the literature. Some of the recommended and best applied methods are the Akaike 
Information Criterion (AIC) (Akaike 1973), the Bayes Information Criterion (BIC) (Schwarz 
1978), and the Mollows-Cp statistic. Theoretically speaking there is no confirmed knowledge as 
to which criterion will be better (Shi and Tsai, 2002). 

In order to eliminate this insufficiency, Tibshirani (1996) proposed the following the Least 
Absolute Shrinkage and Selection Operator (LASSO) which is minimized the penalized LS 
regression 
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where  >0 is the tuning parameter. The LASSO can effectively select significant regressors 
and estimate the regression parameters simultaneously (Tibshirani, 1996). 

Minimizing criterion in (1.7) is equal to  
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where 0s   is tuning parameter selected by the analyst.  
The finite-dimensional performance of the LASSO estimator under standard errors was 

shown by Tibshirani (1996) and its statistical properties were studied by Knight and Fu (2000), 
Fan and Li (2001), Rosset and Zhu (2004) and Zhau and Yu (2006). 

However, when errors in (1.1) are distributed in a heavy-tailed manner, the performance of 
the LASSO which is a particular case of penalized LS regression becomes weaker due to its 
sensitivity to the heavy-tailed error distributions and outliers. Due to this sensitivity, the LAD 
regression which is resistant to outliers and heavy-tailed errors is combined with the LASSO.  

The obtained LAD-LASSO is successful in simultaneously estimating robust regression and 
selecting variables, and therefore used as an alternative to the LASSO. When the LAD and the 
LAD-LASSO are compared, the LAD-LASSO is seen to be able to perform parameter estimation 
while at the same time for selecting the model. Also the LAD-LASSO is resistant to heavy-tailed 
and outliers than the LASSO. The aim of this article is to reformulate LAD-LASSO and solve the 
reformulated LAD-LASSO with the Simplex algorithm. 

The rest of the article is organized as follows. In Section 2, we introduce the reformulated 
LAD-LASSO. Also, it has been shown that LAD-LASSO is a Mathematical Programming 
problem. A real data example is given in Section 3. The paper is finalized with a discussion 
section. 
 
2. THE LAD-LASSO 
 

For simultaneous parameter estimation and variable selection, the LAD-LASSO is obtained 
by minimizing the penalized LAD regression criterion as follows 
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where  >0 is the tuning parameter. In studies of Wang, Li and Jiang (2007), the parametres 
are estimated by minimizing the following objective function 
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by using the different tuning parameters for different regression coefficients. Without loss of 

generality, Wang, Li and Jiang (2007) assumed that 0 0.    

They considered an augmented dataset   * *,i iy x  with 1, 2,..., 1i n p   , where 

   * *, ,i i i iy yx x  for 1 i n  ,    * *, 0,n j n j j jy n  x e  for 1 1j p   , 

and je  is a  1p   dimensional vector with the jth component equal to 1 and all others 

equal to 0. It can be verified that  
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This is just a traditional LAD criterion, obtained by treating  * *,i iy x  as if they were the 

true data. Consequently, any standard unpenalized LAD program (rq in the QUANTREG 
package of R) can be used to find the LAD-LASSO estimator.  

In our study, we find that the LAD-LASSO estimator of β  is obtained by  
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where 0t   is tuning parameter and id is  defined as 
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For estimation of j  parameter in problem (2.5), LAD-LASSO is reformulated as follows 
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Minimizing (2.6) is equal to minimizing  
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Note that 1 2i i id d d   and 1 2i i id d d   where 1id  and 2id  are nonnegative and 

1 2j jj     and 1 2j jj     where 1 j  and 2 j  are nonnegative. We can 

reformulate the problem as:  
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Definition: Any 1 2( , , )1 2β β ,d d  satisfying    1 2 1 2Xβ Xβ d d y is called a 

solution to (2.8). 
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 0,0,...00  and (1,1,...1) 1 . Then C W  is called the objective function of problem 

(2.8). Any solution W  to (2.8), if it further satisfies 0jW  , . j 1,2,..., 2 2p n , we 

call it a feasible solution to problem.  
Thus, LAD-LASSO is translated into a mathematical programming problem and can be 

solved with Simplex Algorithm, which is given by Arthanari and Dodge (1993). 
One of the differences between (2.3) and (2.8) is that the formulation in (2.3) includes the 

tuning parameters in augmented X  matrix. But in this study, the tuning parameter is in 

augmented observation vector y . In additon to, if we take j   in (2.3), dimension of the 

augmented X  matrix is larger than the X  matrix in (2.8). Therefore, the solution of (2.8) is 
easier than the problem in (2.3). Another difference is that the formulation in (2.8) determines a 
suitable range to do variable selection for tuning parameter t. Because t is chosen larger than 
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3. EXAMPLE 
 

To illustrate parameter estimation by using LAD-LASSO, we consider Hald data, which is 
used widely in literature. Hald (1952) present data concerning the heat evolved in calories in 

calories per gram of cement  y  as a function of the amount of each of four ingredient in the 
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mix: tricalcium aluminate  1x , tricalcium silicate  2x , tetracalcium alumino ferrite  3x , 

and dicalcium silicate  4x . The data are shown in Table 3.1. This data has outliers and serious 

multicollinearity. VIF values of explanatory variables are given as follows: 
 

1 38.496VIF   

  2 254.423VIF   

3 46.868VIF   

4 282.513VIF   
 

We will use these data to illustrate the all-possible-regressions approach to variable selection. 
 

Table 3.1. Hald Cement Data 
 

Observation i  iy  1ix  2ix  3ix  4ix  

1 78.5 7 26 6 60 
2 74.3 1 29 15 52 
3 104.3 11 56 8 20 
4 87.6 11 31 8 47 
5 95.9 7 52 6 33 
6 109.2 11 55 9 22 
7 102.7 3 71 17 6 
8 72.5 1 31 22 44 
9 93.1 2 54 18 22 

10 115.9 21 47 4 26 
11 83.8 1 40 23 34 
12 113.3 11 66 9 12 
13 109.4 10 68 8 12 

 

It is instructive to examine the pairwise correlations between ix  and jx  and between ix  

and y . These simple correlations are shown in Table 3.2. Note that the pairs of explanatory 

variables  1 3,x x  and  2 4,x x  are higly correlated since 13 0.824r    and 

24 0.973r   .  

 
Table 3.2. Matrix of Simple Correlations for Hald’s Data 

 

 1x  2x  3x  4x  y  

1x  1.0     

2x  0.229 1    

3x  -0.824 -0.139 1   

4x  -0.245 -0.973 0.030 1  

y  0.731 0.816 -0.535 -0.821 1 
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On the other hand, statistics for detecting outliers for the Hald cement data set is given in 

Table 3.3. Based on the result of Table 3.3, 6e , 8e  and 13e  residual seems suspiciously large. 

Therefore, we can say that Hald data has y-direction outliers. On the other hand, according to the 

leverage  iih , Cook’s distance and DFITS values, it seems that there is no x-direction outliers 

in Table 3.3. In this situation, LAD regression is much more powerful estimation method than LS 
regression.  

 
Table 3.3. Statistics for detecting influential observations for the Hald cement data 

 

ID y  ŷ  ie  iih  
Cook’s 

Distance 
DFITS 

1 78.5 78.495 0.005 0.473 0 0.006 
2 74.3 72.789 1.511 0.256 0.057 0.755 
3 104.3 105.971 -1.671 0.500 0.301 -2.279 
4 87.6 89.327 -1.727 0.218 0.059 -0.724 
5 95.9 95.649 0.251 0.281 0.002 0.140 
6 109.2 105.275 3.925 0.047 0.083 0.556 
7 102.7 104.149 -1.449 0.290 0.064 -0.840 
8 72.5 75.675 -3.175 0.332 0.394 -2.193 
9 93.1 91.722 1.378 0.217 0.038 0.575 

10 115.9 115.619 0.282 0.623 0.021 0.658 
11 83.8 81.809 1.991 0.349 0.171 1.475 
12 113.3 112.327 0.973 0.186 0.015 0.347 
13 109.4 111.694 -2.294 0.227 0.110 -1 

 
In Table 3.4, the parameter estimates based on LS and LAD estimates are given. In Table 3.5-

3.7, the parameter estimates based on Ridge, LASSO and LAD-LASSO are given, respectively. 
 

Table 3.4. Estimates of the Hald coefficients under different estimations methods 
 

Method 
0  1  2  3  4  

LS 62.41 1.55 0.51 0.11 -0.14 
LAD -13.337 2.354 1.28 1.007 0.601 

 

Table 3.5. Ridge estimates at Various Values of k  
 

k  0 0.001 1.61 2.16 3.058 4.690 4.691 10 18.579 

0  
62.40 34.291 0.09 0.082 0.072 0.0623 0.063 0.053 0.049 

1  
1.55 1.840 2.170 2.163 2.151 2.130 2.130 2.066 1.978 

2  
0.510 0.800 1.157 1.159 1.162 1.167 1.167 1.182 1.202 

3  
0.102 0.398 0.741 0.737 0.728 0.713 0.0713 0.668 0.607 

4  
-0.144 0.140 0.489 0.490 0.492 0.495 0.495 0.505 0.518 
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Table 3.6. LASSO estimates  at Various Values of  s    
 

s  0 0.001 1.61 2.16 3.058 4.690 4.691 10 18.579 64.424 

0  
0 0 0 0 0 0.10 0.10 5.64 13.99 62.41 

1  
0 0 0 0 1.01 2.19 2.19 2.13 2.05 1.55 

2  
0 0 1.58 1.55 1.42 1.15 1.15 1.10 1.01 0.51 

3  
0 0 0 0 0 0.76 0.76 0.70 0.61 0.11 

4  
0 0 0.03 0.61 0.06 0.44 0.44 0.43 0.35 0.14 

Re sMS  
9314. 9314. 637.08 108.81 29.53 6.60 6.60 6.56 6.40 6.07 

 
In Table 3.6, LASSO estimates based on various s values are given. According to the result 

which are obtained in Table 3.6, variable selection is done between 0 and 4.690. In this range, a 
model which has less parameter, is obtained for a suitable s value. Therefore; the obtained model 
is less affected from  multicollinearity. After this point which variables selection stops, the 
LASSO estimates continues to be approach to LS estimates. Notice that if s  is chosen larger 

than 

1

0

ˆ
p

LS
j

j





 , the LASSO estimates are equal to ˆ LS

j . On the other hand, until 4.690, while 

s  increases , Re sMS  decreases. Therefore the best point s  is previous point from 4.690. 

 
Table 3.7. LAD-LASSO estimates  at Various Values of t  

 

t  0 0.001 1.61 2.16 3.058 4.690 4.691 10 18.579 64.424 

0  
0 0 0 0 0 0 -0.0003 -5.098 -13.337 -

13.337 

1  
0 0 0 0.008 1.008 2.213 2.213 2.267 2.354 2.354 

2  
0 0.001 1.609 1.491 1.437 1.145 1.145 1.196 1.280 1.280 

3  
0 0 0 0 0.0003 0.865 0.865 0.920 1.007 1.007 

4  
0 0 0.001 0.661 0.612 0.468 0.468 0.518 0.601 0.601 

Re sMS  
9314. 10080. 638.75 126.54 33.63 6.68 7.51 7.51 7.64 7.64 

 
In Table 3.7, LAD-LASSO estimates based on various t values are given. According to the 

result which are obtained in Table 3.7, variable selection is done between 0 and 4.691. In this 
range, a model which has less parameter, is obtained for a suitable t value. Therefore the obtained 
model is less affected from multicollinearity and outliers. After this point which variables 
selection stops, the LAD-LASSO estimates continues to be approach to LAD estimates. Notice 

that if t is chosen larger than 

1

0

ˆ
p

LAD
j

j





 , the LAD-LASSO estimates are equal to ˆ LAD

j . On 
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the other hand, until 4.691, while t increases, Re sMS  decreases. Therefore the best point t is 

previous point from 4.691. 
 
4. DISCUSSION 

 
In this study, the tuning parameter is in augmented observations vector in our approach but in 

study of  Wang, Li and Jiang (2007) the different tuning parameters are in augmented regressor 
variables matrix for different regressor coefficients. Therefore the dimension of matrix is larger 
and using Simplex Algoritm is more difficult than ours. The other difference is the range of tunig 
parameter is known in our approach. Finally based on the analysis result of Hald Data, by using 
the reformulated LAD LASSO, it is shown that a regression model, which is less affected from 
multicollinearity and outliers, can be obtained for suitable t value. Also, we can obtain a sparse 
model in a suitable range, which does variable selection, for the tuning parameter t. 
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