
481 

 

Sigma J Eng & Nat Sci 35 (3), 2017, 481-499 
 

                                                                                                                                 
 
 
 
 

Research Article 
VEHICLE ROUTING PROBLEM IN POST-DISASTER HUMANITARIAN 
RELIEF LOGISTICS: A CASE STUDY IN ANKARA 
 
 
Ayşenur USLU1*, Cihan ÇETİNKAYA2, Selçuk Kürşat İŞLEYEN3  

 
1Department of Industrial Engineering, Başkent University, ANKARA; ORCID:0000-0002-5010-1956 
2Department of Industrial Engineering, Gaziantep University, GAZIANTEP; ORCID:0000-0002-5899-8438 
3Department of Industrial Engineering, Gazi University, ANKARA; ORCID:0000-0002-0113-1083 
 
Received: 23.01.2017   Revised: 30.03.2017   Accepted: 23.05.2017 
 
 
ABSTRACT 
 
Natural disasters have been affecting the human life and causing the death of millions since the very first day 
the human being came into existence. Besides, it causes physical, financial, social and environmental losses 
and affects societies negatively by suspending daily life and human activities. In order to minimize losses, it is 
necessary to plan post disaster activities effectively. One of these activities is humanitarian relief logistics 
activities that aim to provide sufficient amount of humanitarian relief to disaster victims as soon as possible. 
In this paper, a multi depot vehicle routing problem with stochastic demand (SDMD_VRP) is taken into 
account. A mathematical model with chance constraint approach is developed for this rarely discussed 
problem. The proposed non-linear mathematical model is linearized with separable programming methods and 
examined on test problems. Lastly, a case study was carried out for Ankara- the capital city of Turkey. 
Keywords: Humanitarian relief logistics, multi-depot vehicle routing, stochastic demand, chance constraint. 
 
 
1. INTRODUCTION 
 

Disasters are extraordinary situations that cause numerous types of (human life, moral, 
facilities etc.) losses. An effective disaster management must be implemented in order to 
minimize these damages. Disaster management has 4 main functions. These functions are; 
information and planning, operations, logistics, financial and administrative affairs [1]. Among 
these functions; disaster logistics aim to mobilize people, resources, abilities and knowledge in 
order to assist disaster victims. The logistics of humanitarian aid in disasters is called 
“humanitarian relief logistics.” In humanitarian relief logistics, the most important thing is to send 
the proper material, to the correct person, in the correct amount, with the appropriate quality, at 
the right time and to the place. The biggest difference between commercial logistics is that the 
concept of cost has secondary importance in humanitarian relief logistics. In addition, while 
suppliers, manufacturers and demands are determined or at least predictable in commercial 
logistics, the same are uncertain in humanitarian logistics [2].Vehicle routing problem is used to 
determination of the optimal routes for a fleet of vehicles to service a set of customers, given a set 
of operational constraints [3]. Vehicle routing problems has been widely used in logistics 
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managem ent [4] [5]. Thus in this study, the vehicle routing problem in humanitarian logistics is 
taken into account. The aim is to determine vehicle routes that ensure humanitarian aid materials 
is transported as quickly as possible to the disaster area. After a natural disaster, aid material is 
transferred from aid warehouses (i.e. AFAD and Kızılay warehouses, in Turkey) to the temporary 
housing areas where disaster victims are located. The exact number of disaster victims (thus, the 
required amount of aid material) in each temporary housing area is not known beforehand. 
Therefore, this problem can be classified as a multi depot vehicle routing problem with stochastic 
demand (SDMD_VRP). The demands are assumed to belong to the normal distribution and 
meeting these demands is guaranteed to a certain level by developing a stochastic model with the 
chance constraint approach. The proposed non-linear mathematical model is linearized with 
separable programming methods and tested on problems. Lastly, a case study is carried out for 
Ankara -the capital city of Turkey. 

The remainder of the paper is organized as follows. Next section, we provide an overview of 
the existing literature of SDMD_VRP and aid distribution in humanitarian relief logistics. In the 
3rd section, SDMD_VRP is defined and the chance constraint model for the problem is explained. 
Then the nonlinear mathematical model is linearized with separable programming methods. In the 
4th section, the mathematical model is applied to various test problems and performance of the 
model is evaluated. The 5th section contains a case study for Ankara; finally the 6th section 
summarizes the results and advices for potential future studies. 

 
2. LITERATURE REVIEW 
 

This section presents a brief review on the aid distribution in humanitarian relief logistics 
problems. In addition, existing literature for SDMD_VRP is surveyed. 

 
2.1. Aid Distribution For Humanitarian Relief Logistics 
 

Aid distribution problem has been a very important problem for the world for too many years. 
Within the scope of disaster logistics in the literature, many problems have been addressed such 
as; warehouse selection for aid materials, meeting points for disaster victims, inventory policies 
for aid warehouses, establishment of emergency intervention centers for injured people, 
ambulance distribution and post-disaster debris removal. Operations research techniques are used 
very commonly to solve these types of problems. 

Altay and Green [6] revealed that the studies of operations research and management systems 
performed on this subject increased significantly since 1990. According to this review paper, the 
most frequently used methods in operations research were mathematical programming, 
probabilistic/statistical methods and modeling papers more than practical studies until 2005. 
Kovacs and Spens [2] explained the properties, challenges and general framework of the 
humanitarian logistics and differentiated it from the commercial logistics. Yi and Kumar [7] 
addressed the logistic activities involving the transportation of materials from distribution centers 
to disaster zones and the evacuation of injured people to medical services by using ant colony 
optimization. Özdamar and Demir [8] defined a hierarchic clustering and routing procedure for 
the post-disaster coordination of distribution and evacuation activities. Berkoune et al. [9] 
established a mixed integer programming model for transporting humanitarian aids to people and 
proposed the “branch and bound” method that provides the optimal result for small-scale 
problems and the genetic algorithm approach for big-scale problems.  Huang et al. [10] explained 
the indicators of aid distribution performance. Caunhye et al. [11] explained optimization models 
utilized in emergency logistics.  Galindo and Batta [12], as a continuation of Altay and Green's 
review paper, examined the humanitarian logistics papers between 2005 and 2010 and 
emphasized that the number of studies performed on stochastic programming has increased 
significantly when compared to previous years. Allahviranloo et al. [13] proposed a model for the 
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selective vehicle routing problem, later they de veloped a parallel and a classical genetic 
algorithm for that model. Salman and Yücel [14] worked on a series of alternative paths from 
potential supply points for each demand point to find the shortest route in the post-disaster 
process and decided where to establish the facilities. Özdamar and Ertem [15] focused on 
mathematical models in humanitarian logistics and models are classified in terms of modeling 
features and formulation structures. Sharif and Salari [16] developed a greedy randomized 
adaptive search procedure for post-disaster transportation problems to meet the demands of all 
customers from a central warehouse. Hoyos et al. [17] explained operation research models with 
stochastic components (demand, demand location, transportation network, supply etc.). Rahafrooz 
and Alinaghian [18] are assumed that demand is in the form of fuzzy trapezoidal coefficients and 
they proposed a multi-objective stochastic model for relief distribution planning. Theeb and 
Murray [19] a vehicle routing problem has been dealt with considering delivery of aid in post-
disaster humanitarian aid logistics. Here, demands have been taken into consideration as time 
dependent for different products. Akbari and Salman [20] created a simultaneous working 
program for road cleaning teams to open the road by debris removal after disaster. In this paper, it 
has been aimed to determine the routes of the vehicles by considering situations that the demand 
of disaster victims is stochastic and aids have been received from multiple depots. 
 
2.2. Multi Depot Vehicle Routing Problem with Stochastic Demand 
 

After examining the literature, it is seen that there are only a few studies which contains both 
the “multi depots” and “stochastic demands”. Existing literature of the related to SDMD_VRP are 
given in Table 1. 

 
Table 1.  Existing literature about SDMD_VRP 

 

Source Content 

Tillman [21] 
A heuristic approach is proposed for the case, it is assumed that the demands belong to 
the poisson distribution. 

Chan et al. 
[22] 

The expected demands are determined by considering the demands of people who 
have previously received services. 

Miranda and 
Garrido [23] 

Problem is modeled as hub-and-spoke network and a heuristic procedure is proposed. 

Christiansen 
et al.[24]  

Branch-price-and-cut algorithms are implemented for the case in which depot capacity 
is not limited, and the demands are identified as random variables. 

Calvet et al. 
[25]  

Iterative local search and monte-carlo techniques are used for the problem, their 
algorithms included having safety stocks for minimizing the risk of route break-
downs. 

 
To fill this gap in the literature, our problem is defined as a Multi Depot Vehicle Routing 

Problem with Stochastic Demand. Next section, the problem is defined and explained 
comprehensively. 
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3. PROBLEM DESCRIPTION 
 

Stochastic vehicle routing problem (SVRP) appears when some elements of the problem are 
not deterministic such as customer groups, demands or travel time. These elements are modeled 
as random variables received from a known probability distribution in SVRP. The objective 
function in these types of problems is generally the minimization of the routes. The most studied 
SVRP problem type is the vehicle routing problem with stochastic demand in the literature [26]. 
Multi-depot vehicle routing problem with stochastic demand (SDMD_VRP) is the problem of 
finding the minimum cost routes when serving to the customers from multiple depots, whose 
demands belong to a known probability distribution. 

 

 
 

Figure 1. SDMD_VRP 
 

There are multiple depots with limited capacities in the SDMD_VRP problems. The vehicles 
have limited capacities that distribute the products in depots to the customers. Each route ends at 
the depot where it starts. Each of the customers is visited only once by a single vehicle. Customer 
demands are stochastic variables received from a known probability distribution. The aim is to 
minimize the total expected travel time (or cost).  

SDMD_VRP problem is presented on G = (V, A, D) graph. Here V is a set of the nodes and 
composed of two subsets. While ௜ܸ ൌ ሼݒଵ, ,ଶݒ … ௠ሽ indicates the set of the depots, ௝ܸݒ ൌ
ሼݒ௠ାଵ, ,௠ାଶݒ … ,  ௡ሽ represents the set of the customers receiving service from the depots. Aݒ
defines the set of the connections between a pair of nodes while D defines the set of the cost, 
travel time or distances between the nodes. Cost matrix D is symmetric and provides triangular 
inequality.  

Here, different from the multi-depot vehicle routing problem, the customer demands are 
stochastic variables received from known probability distributions ( ߦ௝, j	 ൌ 	m ൅ 1,… , n). It is 
assumed that the customer demands ሺߦ௝ሻ do not exceed the vehicle and depot capacity. Moreover, 
it is assumed that the real demand of each customer is obtained after reaching to the customer. 
Within the scope of this study; it is assumed that the customer demands belong to the normal 
distribution.    

 
3.1. Mathematical Model for Deterministic Multi Depot Vehicle Routing Problem (MDVRP) 
 

In this study, the below model in literature [27] was taken as a basis for the deterministic state 
of MDVRP.  

 

Sets and Parameters: 
 Set of all depots : ܫ
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 Set of all customers :	ܬ
 Set of all vehicles :ܭ
ܰ : Number of customers 
ܿ௜௝: Distance between point ݅	and ݆	        ݅, ݆	 ∈ 	ܫ ∪  ܬ	

௝݀ : Demand of customer ݆	                      ݆	 ∈  ܬ	

௜ܸ Capacity of depot ݅                              ݅	 ∈  ܫ	
ܳ௞: Capacity of vehicle (route) ݇	           ݇	 ∈  ܭ

 

Decision variables: 
 

௜௝௞ݔ ൌ ൜
1, ,݅										݇	݁ݐݑ݋ݎ	݊݋	݆	ݐ݊݅݋݌	ݏ݁݀݁ܿ݁ݎ݌	ݕ݈݁ݐܽ݅݀݁݉݉݅	݅	ݐ݊݅݋݌	݂݅ ݆	 ∈ 	ܫ ∪ ܬ
0, ݁ݏ݅ݓݎh݁ݐ݋

 

௜௝ݖ ൌ ൜
1, ݅	ݐ݋݌݁݀	݋ݐ	݀݁ݐܽܿ݋݈݈ܽ	݆	ݎ݁݉݋ݐݏݑܿ	݂݅	
0, herwiseݐ݋

 

௟ܷ௞  :  auxiliary variable for sub-tour elimination constraints in route ݇ 
Mathematical Model: 
 

	݊݅ܯ ∑ ∑ ∑ ௜௝௞ܿ௜௝௞∈௄௝∈ூ∪௃௜∈ூ∪௃ݔ 										                                                                                            (1) 
 

∑ ∑ ௜௝௞௜∈ூ∪௃௞∈௄ݔ ൌ 1																												∀݆ ∈  (2)                                                                               					ܬ
                                                                                                 

∑ ∑ ௝݀ݔ௜௝௞௝௜∈ூ௎௃ ൑ ܳ௞																											∀݇	 ∈  (3)                                                                          						ܭ
                                                  

௟ܷ௞ െ ௝ܷ௞ ൅ ௟௝௞ݔܰ ൑ ܰ െ 1																∀݈, ݆ ∈ ݇∀		ܬ ∈  (4)                                                                 ܭ
                                       
∑ ௜௝௞ݔ െ ∑ ௝௜௞௝∈ூ௎௃௝∈ூ௎௃ݔ ൌ 0													∀݇ ∈ ,ܭ ݅ ∈  (5)                                                                  		ܬܷܫ
                                
∑ ∑ ௜௝௞ݔ ൑ 1																																	∀݇ ∈ ௝∈௃௜∈ூ							ܭ                                                                            (6) 
                                         
∑ ௝݀ݖ௜௝௝∈௃ 			൑ ௜ܸ																																				∀݅ ∈  (7)                                                                                			ܫ
 

െݖ௜௝ ൅ ∑ ሺݔ௜௨௞௨∈ூ∪௃ ൅ ௨௝௞ሻݔ ൑ 1							∀	݅ ∈ ,ܫ ݆ ∈ ,ܬ ݇ ∈  (8)                                                           		ܭ
                         
௜௝௞ݔ ∈ ሼ0,1ሽ																																													∀	݅ ∈ ,ܫ ݆ ∈ ,ܬ ݇ ∈  (9)                                                             ܭ
                          
௜௝ݖ ∈ ሼ0,1ሽ																																															∀	݅ ∈ ,ܫ ݆ ∈   (10)                                                                      	ܬ
 

௟ܷ௞ ൒ 0																																																				∀݈ ∈ ,ܬ ݇ ∈  (11)                                                                      ܭ
 

Objective function (1) of the model aims to minimize the total distance. Constraint (2) 
provides giving service to each customer at a single route. Constraint (3) is the vehicle capacity 
constraint which provides the total demands of the customers do not exceed the vehicle capacity. 
Constraint (4) provides sub-tour elimination. Constraint (5) provides equal input and output to 
each node in each of the routes. Constraint (6) provides a vehicle to exit from one depot at the 
most. Constraint (7) is the depot capacity constraint which provides the total demands of the 
customers assigned to a depot not to exceed the depot capacity. Constraint (8) provides a 
customer to be at the depot route to which customer is assigned. Constraint (9), (10), (11) are the 
binary and non negativity constraints of the variables. 

 
3.2. 0-1 Integer Programming Model with Chance Constraint for SDMD_VRP  
 

In the chance constraint approach, violation of some constraints is allowed at a predetermined 
probability level. In stochastic programming with chance constraint, deterministic constraints 
comprising stochastic information are replaced with stochastic constraint sets. This approach is 
illustrated as ܲݎ	ሺݔܣ	 ൑ 	ܾሻ 	൒ 	߮. Here it is stated that realization probability of ݔܣ	 ൑ 	ܾ 
constraint is requested to be higher than the ߮ probability value [28]. 
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The aim of this model, which assumes that the demands belong to the normal probability 
distribution, is to obtain minimum route length such that; the probability of the total demands of 
the customers in the routes exceeding the vehicle capacity ܳ௞ and the probability of total demands 
of the customers assigned to the depot exceeding the depot capacity ௜ܸ will remain under the pre-
determined probability level. 

 

 Maximum failure probability given for the route failure due to the vehicle capacity : ߙ
 Maximum failure probability given for the route failure due to the depot capacity :	ߚ

௝݀		: Random variable representing the demand of its customer and  ௝݀		 ~ N (μ௝,   ௝ሻߪ
 

For vehicle capacity: 
 

∑൫ݎܲ ∑ ௝݀ݔ௜௝௞௝௜∈ூ௎௃ ൑ ܳ௞൯ ൒ 1 െ ݇∀												ߙ ∈  (12)                                                                   		ܭ
 

For depot capacity: 
 

∑൫ݎܲ ௝݀ݖ௜௝௝∈௃ 			൑ ௜ܸ൯ ൒ 1 െ ݅∀																						ߚ ∈  (13)                                                                     		ܫ
 

Constraints should be provided in the model instead of (3) and (7). 
The probability for the total demand on a route to exceed the vehicle capacity will be 

maximum ߙ. In this case ܲሺܺ ൐ ܳ௞ሻ 	൑ or ܲሺܺ ߙ	 ൑ ܳ௞ሻ ൒ 	1 െ  as the probability for the total ߙ

demand on the route not to exceed the vehicle capacity. Here ܺ~	ܰ	ሺ∑ μ௝ , ට∑ߪ௝ଶሻ	represents the 

total demand of the customers in a route. If Z transformation is made here [26]: 
 

ܲቌݖ ൑
୕ౡି∑ஜೕ

ට∑ఙೕమ
ቍ ൒ 1 െ  (14)                                                                                                            	ߙ

 

ܲሺݖ ൑ ଵିఈሻݖ ൌ 1 െ   (15)                                                                                                                 		ߙ
 

ଵିఈݖ ൑
୕ౡି∑ஜೕ

ට∑ఙೕమ
					                                                                                                                          (16) 

 

∑μ௝ ൅ ௝ଶߪ∑ଵିఈටݖ ൑ Q୩		                                                                                                           (17) 
 

When ݔ௜௝௞ 0-1 variable is added to the equation, new vehicle capacity constraint is obtained. 
 

∑∑μ௝ݔ௜௝௞ ൅ ௜௝௞ݔ௝ଶߪ∑∑ଵିఈටݖ ൑ Q୩	                                                                                        (18) 
 

Similar operations should also be applied for depot capacity constraint. 
The probability for the total demands of the customers assigned to a depot (routes of the 

depot) to exceed the depot capacity will be maximum ߚ. In this case ܲሺܺ ൐ ௜ܸሻ 	൑  in other ,ߚ	
words ܲሺܺ ൑ ௜ܸሻ ൒ 	1 െ   .ߚ

 

ܲቌݖ ൑
୚౟ି∑ஜೕ

ට∑ఙೕమ
ቍ ൒ 1 െ  (19)                                                                                                          				ߚ

 

ܲ൫ݖ ൑ ଵିఉ൯ݖ ൌ 1 െ  (20)                                                                                                             						ߚ
 

ଵିఉݖ ൑
୚౟ି∑ஜೕ

ට∑ఙೕమ
				                                                                                                                           (21) 

 

∑μ௝ ൅ ௝ଶߪ∑ଵିఉටݖ ൑ V୧	                                                                                                              (22) 
 

When ݖ௜௝ 0-1 variable is added to the equation, new depot capacity constraint is obtained. 
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∑μ௝ݖ௜௝ ൅ ௝ଶߪ∑ଵିఉටݖ ௜௝ݖ ൑ V୧				                                                                                                 (23) 
 

As a result, the mathematical model with chance constraint for SDMD_VRP is defined as 
follows: 

 

Objective function (1) 
Constraints (2), (18), [4-6], (23), [8-11] 
Constraints (1), (2), (4), (5), (6) and [8-11] are the same as the constraints described before. 

Constraint (18) is the vehicle capacity constraint with chance constraint which provides the total 
demands of the customers with stochastic demand to whom the vehicle goes to be bigger than the 
vehicle capacity namely, allows for the route failure to a certain extent. Constraint (23) is the 
depot capacity constraint with chance constraint which allows the total demands of the customers 
with stochastic demand assigned to a depot to exceed the depot capacity to a certain extent. 

 
3.3. Linearization of SDMD_VRP Using Separable Programming 
 

The mathematical model developed is a nonlinear model due to the	ට∑ ∑ ௃	௜௝௞ݔ௝ଶߪ 	୧∈୍∪୎  and 

ට∑ ௜௝୨∈୎ݖ௝ଶߪ  terms. The model is transformed into integer linear programming model with the use 

of separable programming method to solve the model more easily. 
Separable programming problems are special type of nonlinear problems. To use separable 

programming, the function should be defined as the sum of the single variable functions. 
Separable programming does not guarantee an optimal solution for nonlinear models, but offers 
an approximate solution for the problem. To find better approximate solutions, separable 
functions are replaced with piecewise linear functions [29]. Piecewise linear function is used in 
order to transform the nonlinear programming models into a suitable form with separable 
programming [29]. Huang [30] describe the piecewise linear function approach in detail. 

 

ܵ௞ ൌ ට∑ ∑ ௜௝௞௃୧∈୍∪୎ݔ௝ଶߪ 																																	∀݇	 ∈   (24)                                                                   	ܭ
 

ܵ௞
ଶ ൌ 	∑ ∑ ௜௝௞௃୧∈୍∪୎ݔ௝ଶߪ 																																	∀݇	 ∈   (25)                                                                 				ܭ

 

∑ ∑ μ௝ݔ௜௝௞௃୧∈୍∪୎ ൅		ݖଵିఈ ൈ ܵ௞ ൑ Q୩														∀݇	 ∈  (26)                                                                				ܭ
 

In this case, the value range ቂܵ௞
ଶതതതതത, ܵ௞

ଶቃ	 to be retained by ܵ௞
ଶ should be identified in order to 

estimate ܵ௞, and this range should be divided into M parts. M is  set of selected grid points. Since 
ܵ௞

ଶ is the sum of the variations of the customer demands for each vehicle, minimum value it will 
retain is 0. Maximum value to be retained by  ܵ௞

ଶ , however, can be found easily by solving the 
knapsack problem defined below.  

 

௝௞ݍ ൌ ൜
1, 	if	vehicle	k	is	allocated	to	customer	j	
0, otherwise

 

∑	ݔܽܯ ∑ ௝௞௞∈௄௝∈௃ݍ௝ଶߪ 										                                                                                                        (27) 
 

∑ μ௝௝∈௃ ௝௞ݍ ൑ 	ܳ௞																																∀݇ ∈  (28)                                                                                	ܭ
 

௝௞ݍ ∈ ሼ0,1ሽ																																												∀݆ ∈ ,	ܬ ∀݇ ∈  (29)                                                              							ܭ
 

Objective function (27) maximizes the sum of the variations of the customers assigned to the 
same vehicle. The constraint (28) prevents the sum of the average of the customer demands 
assigned to the vehicle from exceeding the vehicle capacity. 
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When the function is divided into M range, M number of new variables should be identified. 
Here, the higher M values is chosen, namely the more the function is divided into parts, the better 
the result will be, but the solution time of the model will also increase.  

Similar operations apply for ට∑ ௜௝୨∈୎ݖ௝ଶߪ   terms.  

 ௠௞ and ߰௠௜variables are identified as Special Order Set Type-2 (SOS2) in order to provide theߣ
value to be in only one range. The objective of the particular order set is to provide only the two 
adjacent variables to retain a value different from zero, here all the other ߣ௠௞ variables will retain 
0 value. In the square root function, ܾ௠௞ and ݃௠௜ shows the range values in the y-axis, ܿ௠௞ and 
݊௠௜	shows the values in the x-axis. 

The constraints required for linearization of the inequality (18) are given below. 
 

0 ൑ ௠௞ߣ ൑ 1                               ∀݉ ∈ ݇∀,ܯ ∈  (30)                                                                    		ܭ
 

∑ ௠௞௠ߣ ൌ 1																																					∀	k ∈ K					                                                                                (31) 
 

ܵ௞ ൌ 		∑ ܾ௠௞ ∗ ∀k																					௠௞ߣ ∈ K			௠                                                                                    (32) 
 

௞ܸ ൌ ∑ ܿ௠௞ ∗ ∀k																							௠௞ߣ ∈ K				௠                                                                                   (33)  
 

ܾ௠௞ ൌ 	ඥܿ௠௞                               ∀݉ ∈ ,ܯ ∀݇ ∈   (34)                                                                 					ܭ
 

௞ܸ ൌ ∑ ∑ ௜௝௞௃୧∈୍∪୎ݔ௝ଶߪ 																			∀k ∈ K		                                                                                   (35) 
 

∑ ∑ μ௝ݔ௜௝௞௃୧∈୍∪୎ ൅		ݖଵିఈ ∗ ܵ௞ ൑ ܳ௞																		∀k	 ∈ K	                                                                 (36)  
 

௠௞ߣ ∈ ܱܵܵ2                                                  ∀݉ ∈ ݇∀,ܯ ∈   (37)                                          											ܭ
 

ܵ௞	, ௞ܸ ൒ 0																																																													∀k	 ∈ K				                                                               (38) 
 

The constraints required for linearization of the inequality (23) are given below. 
 

0 ൑ ߰௠௜ ൑ 1                                        ∀݉ ∈ i	∀ ,ܯ ∈ I                                                              (39) 
 

∑ ߰௠௜௠ ൌ 1																																															∀	i ∈ I	                                                                             (40) 
 

௜ܲ ൌ ∑ ݃௠௜ ∗ ߰௠௜																																		∀	i ∈ I					௠                                                                           (41) 
 

ܴ௜ ൌ ∑ ݊௠௜ ∗ ߰௠௜																																		∀	i ∈ I			௠ 																										                                                    (42) 
 

݃௠௜ ൌ 	ඥ݊௠௜                                        ∀݉ ∈ i	∀ ,ܯ ∈ I																									                                        (43) 
 

ܴ௜ ൌ ∑ ௜௝୨∈୎ݖ௝ଶߪ 																																								∀	i ∈ I																						                                                           (44) 
 

∑ μ௝ݖ௜௝୨∈୎ ൅ ଵିఉݖ ∗ ௜ܲ ൑ V୧																				∀i ∈ I																															                                                    (45) 
 

߰௠௜ 	∈ ܱܵܵ2																																													∀݉ ∈ ,ܯ ∀	i ∈ I                                                               (46) 
 
௜ܲ 	, ܴ௜ ൒ 0																																																			∀i ∈ I																																											                                         (47) 

 

As a result, SDMD_VRP mathematical model which is linearized by separable programming 
is given below. 

 

Objective function (1) 
S.t 
(2), (4), (5), (6), [8-11] and [30-47]. 

 

Solution of the model linearized by piecewise function is either infeasible or optimal solution 
for the original problem. If the solution obtained from the model is an infeasible solution for the 
original problem, grid point (M) is increased and the model is solved again. If the solution 
obtained is not infeasible, it is optimal solution. 

 
 
 

A. Uslu, C. Çetinkaya, S.K. İşleyen    / Sigma J Eng & Nat Sci 35 (3), 481-499, 2017 



489 

 

4. COMPUTATIONAL EXPERIMENTS 
 

In this section the proposed mathematical model formed for SDMD_VRP is studied on a 
problem and the performance of the model is examined according to the customer and depot 
amounts. 

 
4.1. Sample Problem 
 

The problem data are produced randomly (in the table below) for the problem that is 
composed of 2 depots and 8 customers. Coordinates of the depot and customer sets are formed 
randomly using normal distribution in the [0,99] range of field. Average of the customer demands 
is obtained using normal distribution in the range of [25,75]. Standard deviation is considered in 
three levels as low, median and high in order to better observe the behavior of the model. Low 
standard deviation (dev1), median standard deviation (dev2) and high standard deviation (dev3) 
are determined by taking 10%, 15% and 20% of the average of the demands, respectively.  

 
Table 2. Data of the example problem 

 

 X coordinate Y coordinate Capacity 
Depot 1 45 47 250 
Depot 2 15 28 250 

 
Customer No X coordinate Y coordinate Demand mean dev1 dev2 dev3 

1 66 13 51 5.1 7.65 10.2 
2 21 74 31 3.1 4.65 6.2 
3 73 58 52 5.2 7.8 10.4 
4 81 98 59 5.9 8.85 11.8 
5 94 33 44 4.4 6.6 8.8 
6 31 94 43 4.3 6.45 8.6 
7 0 75 38 3.8 5.7 7.6 
8 39 37 71 7.1 10.65 14.2 

 
Vehicle capacity ܳ௞ ൌ 180		ሺ	݇ ൌ 1,2,3,4ሻ	 and ranges are divided into 5-unit parts. The total 

routes and the route lengths calculated for the different ߙ levels are given in the table below (ߙ 
and β levels were taken as equal). 
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Table 3. Calculation results for the sample problem 
 

 Route length Routes CPU (sec.) 

ߙ ൌ 0.05 

dev1 399.52 
D1-3-5-1-D1 

D1-8-D1 
D2-7-2-6-4-D2 

35.12 

dev2 464.34 

D1-1-5-D1 
D1-4-3-D1 

D2-7-6-2-D2 
D2-8-D2 

407.87 

dev3 487.22 

D1-4-6-D1 
D1-8-D1 

D2-1-5-3-D2 
D2-2-7-D2 

540.67 

ߙ ൌ 0.025 

dev1 399.52 
D1-1-5-3-D1 

D1-8-D1 
D2-4-6-2-7-D2 

47.03 

dev2 464.34 

D1-1-5-D1 
D1-4-3-D1 

D2-7-6-2-D2 
D2-8-D2 

287.91 

dev3 506.99 

D1-3-5-D1 
D1-6-4-D1 
D2-1-8-D2 
D2-2-7-D2 

1705.34 

ߙ ൌ 0.005 

dev1 435.05 
D1-3-4-6-D1 

D1-8-D1 
D2-1-5-2-7-D2 

103.40 

dev2 464.34 

D1-1-5-D1 
D1-4-3-D1 

D2-7-6-2-D2 
D2-8-D2 

279.57 

dev3 506.99 

D1-3-5-D1 
D1-6-4-D1 
D2-1-8-D2 
D2-2-7-D2 

851.11 

 
Mathematical models developed for the problem are solved with GAMS 23.3 package 

program (CPLEX solver) and the results given in the table above.  
 

4.2. Performance Evaluation of Mathematical Model 
 

In this section, the performance of model based on the number of depot and customers is 
examined in a confidence interval of ሺߙ ൌ ߚ ൌ 0.05ሻ. Standard deviation is considered in 3 levels 
as in the sample problem. As a data set is not available for SDMD_VRP in the literature, the data 
set [31] formed for MDVRP in the literature is taken as a basis in the study. Customer and depot 
numbers are gradually increased. The demands in the data set are taken as the average of 
demands. Standard deviation is determined by taking 10% (dev1), 15% (dev2) and 20% (dev3) of 
the demands. Ranges are divided into 10-unit parts. Vehicle capacity is taken 50 while depot 
capacity as 200. 

Model is encoded with GAMS 23.3 package program and solved using a computer with Intel 
Core i5 1.8 GHz, 4GB RAM features. The results are given below. 
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Table 4. Calculation results 
 

* Optimal solution 
 
5. CASE STUDY  
 

This section presents the results of the proposed model for Ankara. Model was implemented 
as an earthquake scenario prepared by AFAD (Republic of Turkey Prime Ministry Disaster & 
Emergency Management Authority). 

Ankara is the capital city of Turkey and 2th most crowded city. Its population was 5.346.518 
with a total acreage of 25437 km2 in 2016. City is consisting of 24 districts as shown in figure 2. 
Ankara’s %29 land is located on the first and second seismic hazards. Larger lands in Ankara is 
located in the area of third and fourth-degree earthquake zone but there are faults capable of 
producing large-scale earthquakes in the near vicinity of Ankara [32]. Earthquake map of city is 
shown in figure 3.  

 

 
 

Figure 2. District map of Ankara 
 

Number 
of 

customer 

Level of 
standart 

deviation 

2 Depot 3 Depot 4 Depot 
CPU 
(sec.) 

GAP(%) 
CPU 
(sec.) 

GAP(%) 
CPU 
(sec.) 

GAP(%) 

8 
dev1 32.04 0.00* 18.77 9.93 223.74 9.97 
dev2 117.51 0.00* 59.47 8.12 137.59 9.95 
dev3 32.13 0.00* 54.16 8.74 160.45 9.94 

10 
dev1 384.24 0.00* 176.60 7.29 737.78 9.99 
dev2 205.33 0.00* 209.46 9.99 943.42 9.99 
dev3 268.87 0.00* 250.28 8.65 1000.51 10.00 

12 
dev1 229.66 9.99 167.19 9.99 670.51 9.99 
dev2 278.79 9.99 637.03 9.99 504.76 9.99 
dev3 317.43 9.99 1000.44 13.51 1000.51 18.25 

15 
dev1 1000.77 14.02 736.11 10.00 1000.50 13.89 
dev2 1000.40 12.98 743.62 9.99 1000.64 13.91 
dev3 1000.90 16.73 901.10 9.84 1000.57 14.40 
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Figure 3.  Earthquake map of Ankara 
 

Estimated victim number has been obtained from the results of a scenario study carried out by 
AFAD for Ankara. This scenario study has been carried out by considering the fault lines in 
Ankara, the populations of districts, the status of structures and the details of scenario are not 
included in this research. Estimated victim number represents the estimated people who are in 
need of help and it is presented in Table 5. 

 
Table 5. The estimated number of victims  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

District Population 
The number of people(in 

temporary shelter)  
Standard 
deviation 

Kızılcahamam 24933 1774 267 

Kazan 43213 691 104 

Güdül 8595 206 31 

Ayaş 10785 114 18 

Beypazarı 45984 951 143 

Çamlıdere 5639 448 68 

Çubuk 83347 1311 197 

Nallıhan 22391 261 40 

Kalecik 5454 75 12 

Pursaklar 20345 168 26 

Sincan 25667 200 30 

Keçiören 12682 103 16 

Akyurt 25148 224 34 

Yenimahalle 14584 111 17 

TOTAL 348767 6637 1003 
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Table 6. Temporary residential areas (TRA) 
 

 
The number of people given table 5 refers to the number of people waiting for aid materials in 

temporary housing after disaster. However, the real numbers that occur after a disaster will show 
a deviation from the estimated number. Average demand is accepted as the forecasted amount of 
people in table 5 and standard deviation is accepted as %15 (rounded to the upper integer values).  
Temporary residential areas (TRA) determined by the AFAD are given in Table 6. Then, areas 
and depots (both AFAD and Kızılay depots) are marked using Google Earth and distances are 
calculated (Appendix 1). 

In order to reach a solution with a mathematical model in the areas of Kazan, Pursaklar, and 
Kızılcahamam, they are first treated as clusters (Kazan city stadium, Pursaklar industrial 
occupational high school, Kızılcahamam city stadium). Later on, these districts are routed among 
themselves. Depot capacities are taken at varying levels. In this scenario, the values are identified 
in proportion to the amount of people that will need sheltering. The demands and capacities in the 
study are in units for uniform products that belong to normal distribution. Vehicle capacities are 
taken as 2500 units, and there are 4 available vehicles. The results for varying confidence levels 
are given in the Table 7. 
 

 
 
 
 
 
 
 
 
 
 
 
 

District TRA District TRA 

Akyurt Kalaba area Yenimahalle 75.Year hippodrome 

Ayaş Ayaş district stadium Beypazarı City stadium 

Çubuk City stadium Çamlıdere City stadium 

Kalecik Emeklikent park Güdül District stadium 

Kazan 
Saray Mosque 

Saray truck park 
City stadium 

Pursaklar 
Endüstri occupational high school 

Saray industrial high school 
Azmi Ertuğrul school 

Keçiören Ovacık sport facility Kızılcahamam 

City stadium 
Sport facility 

Anadolu high school  
Kazım Karabekir school  

Orhangazi school 
Çağatay school 

Sincan Water Depot Area Nallıhan Sport facility area 

Vehicle Routing Problem in Post-Disaster    …  /   Sigma J Eng & Nat Sci 35 (3), 481-499, 2017



494 

 

Table 7. Implementation results of the scenario 
 

Case 
no 

Confidence 
Level 

Depot(D) capacity 
Total route 
lenght(km) 

Routes 

1 %99 
D1 unlimited 

D2 limited(6000 unit) 
854.4 

1-4-13-25-15-14-1 
2-6-3-5-18-10-12-2 

2-9-11-2 
2-19-2 

2 %99 
D1 limited(6000 unit) 

D2 unlimited 
803.7 

2-9-2 
2-10-18-6-3-5-12-2 

2-11-4-13-25-15-14-2 
2-19-2 

3 %99 
D1-D2 equal and 
limited(6000 unit) 

850.5 

1-4-13-25-15-14-1 
2-5-3-6-18-10-12-2 

2-11-9-2 
2-19-2 

4 %95 
D1 unlimited 

D2 limited(6000 unit) 
850.5 

1-4-13-25-15-14-1 
2-5-3-6-18-10-12-2 

2-11-9-2 
2-19-2 

5 %95 
D1 limited(6000 unit) 

D2 unlimited 
799.0 

2-9-2 
2-12-10-18-6-3-5-2 

2-14-15-25-13-4-11-2 
2-19-2 

6 %95 
D1-D2 equal and 
limited(6000 unit) 

850.5 

2-5-3-6-18-10-12-2 
2-11-9-2 
2-19-2 

1-4-13-25-15-14-1 

7 %90 
D1 unlimited 

D2 limited(6000 unit) 
849.8 

1-4-13-25-15-14-11-1 
2-9-2 

2-12-10-18-6-3-5-2 
2-19-2 

8 %90 
D1 limited(6000 unit) 

D2 unlimited 
799.0 

2-9-2 
2-12-10-18-6-3-5-2 

2-14-15-25-13-4-11-2 
2-19-2 

9 %90 
D1-D2 equal and 
limited(6000 unit) 

849.8 

1-4-13-25-15-14-11-1 
2-9-2 

2-12-10-18-6-3-5-2 
2-19-2 

 
When Table 7 is examined, it is seen that longer routes are formed in situations where 

confidence level is high (e.g. case 1 and 4) or route length stays the same (e.g. case 3 and 6). 
Furthermore, when case 7 and 9 are examined, it is seen that the fact that capacity of D1 is infinite 
does not lead to a change in the solution and the fact that capacity of D2 is infinite (case 8) 
reduces the total route.  
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Figure 4. Routes (Case No: 6) 
 

The results for minimum tours are given in as follows: (when Kazan, Pursaklar and 
Kızılcahamam districts are routed among themselves) 

Kazan Saray Mosque- Saray Truck Park-City Stadium 
Pursaklar Industrial Occupational High School-Saray Industrial High School-Azmi Ertuğrul 

School   
Kızılcahamam City Stadium -Çağatay School-Kazım Karabekir School-Orhangazi School-

Sport Facility-Kızılcahamam High School 
 
6. CONCLUSION 
 

The task of humanitarian logistics comprises acquiring and delivering requested supplies and 
services, at the places and times they are needed, while ensuring best costs. In the immediate 
aftermath of any disaster, these supplies include items that are vital for survival, such as food, 
water, temporary shelter and medicine, among others. Success and performance in humanitarian 
relief chains is very difficult to measure because of some distinct characteristics that humanitarian 
operations have, such as very unpredictable demand, difficulty to obtain data from operations, 
unpredictable working environment, lack of incentive for measurement (due to their non-profit 
character), very short lead time and unknown variables, like geography, political situation or 
weather. Stochastic systems describe the physical systems in which the values of parameters, 
measurements, expected input, and disturbances are uncertain. In probability theory, a purely 
stochastic system is one whose state is randomly determined, having a random probability 
distribution or pattern that may be analyzed statistically but may not be predicted precisely. 
Humanitarian logistics planning has stochastic elements in literature and most commonly faced 
parameter is the “stochastic demand”. 

Thus in this paper, a rarely discussed problem namely SDMD_VRP is investigated and a 
mathematical model with chance constraint is suggested for the problem. Mathematical model is 
reformulated with separable programming and an integer linear model was obtained. The 
proposed models guarantee the optimal result for SDMD_VRP. In the study, model performance 
is examined by applying the proposed model at different variation/confidence levels and in 
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different depot and customer numbers. Also, after conducting a case study for Ankara, routes for 
aid material distribution after a disaster are identified. The case study belongs to a scenario which 
is generated by Republic of Turkey Prime Ministry Disaster & Emergency Management 
Authority regarding the threats in Ankara. The obtained results are important for decision makers 
from the point of view of determining the vehicle routes which are going to ensure that the 
uncertain demands of disaster victims will be met at a certain level. 

The future study may be conducted to reach more effective solutions for this NP-hard 
problem by using heuristic– meta-heuristic methods. The collapse of roads has not been included 
in this research and the model suggested in future studies can be improved to include this 
situation. Furthermore, the cost of unmet demand has not been reflected to the model and this 
situation can also be examined in further studies. 

Distribution of multiple types of products can be considered or heterogenuos fleet can be 
applied to the same problem. Moreover, several variations of the problem such as SDMD_VRP 
with time window and SDMD_VRP with distance constraints can be studied by the researchers.  
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Appendix 1. Distances matrix (km) 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

1 0 - 92.3 63.3 93.6 124 47.8 45.2 64.8 57.9 38.4 39.8 115 111 116 64.5 72.7 68.1 97.6 97.2 97.3 87.7 97.6 97.9 168 

2 - 0 59.9 48.2 61.3 95.7 19.6 17.1 37 30.1 11.2 7 88.4 84.8 78.6 36.6 44.8 40.2 69.1 68.7 68.8 69.2 69.1 69.4 147 

3 92.3 59.9 0 99.5 11.7 39.4 57.5 54.9 74.8 36.8 66.9 52.7 140 124 130 26.2 20.9 25.6 82 81.6 81.7 82.1 82 82.3 198 

4 63.3 48.2 99.5 0 102 131 47.2 53.1 48.7 65.8 40.1 46.8 41.4 98.3 31.6 72.3 80.5 75.9 81.8 81.4 81.5 81.9 81.8 82.1 100 

5 93.6 61.3 11.7 102 0 50.6 58.3 55.8 38.8 37.7 67.8 53.5 141 125 116 27.1 21.7 26.5 68.5 68.1 68.2 68.7 68.5 68.8 199 

6 124 95.7 39.4 131 50.6 0 88.9 86.3 90.1 68.2 98.3 84.1 171 156 161 57.6 52.3 57 120 119 120 120 120 139 230 

7 47.8 19.6 57.5 47.2 58.3 88.9 0 5.4 22.8 24 21.1 14.3 93.9 70.2 75.7 30.5 38.7 34.1 54.9 54.5 54.6 55 54.9 55.2 153 

8 45.2 17.1 54.9 53.1 55.8 86.3 5.4 0 21.8 23.5 20.6 13.8 86.6 69.2 74.7 30 38.2 33.6 53.9 53.5 53.6 54 53.9 54.2 145 

9 64.8 37 74.8 48.7 38.3 90.1 22.8 21.8 0 41.6 39.1 31.9 88.8 58.4 50.8 34.5 39.4 35.3 32.8 32.5 32.6 33 32.9 33.2 147 

10 57.9 30.1 36.8 65.8 37.7 68.2 24 23.5 41.6 0 32.5 17.6 108 91.4 97 9.2 16.6 9.2 73.9 74 74.3 74 73.9 34.5 165 

11 38.4 11.2 66.9 40.1 67.8 98.3 21.1 20.6 39.1 32.5 0 13.3 80.6 85.2 70.8 39 47.2 42.6 72.1 71.8 71.9 72.3 72.2 72.5 139 

12 39.8 7 52.7 46.8 53.5 84.1 14.3 13.8 31.9 17.6 13.3 0 86.3 81.6 76.5 24.1 32.3 27.7 63.9 63.6 63.7 64.1 64 64.3 145 

13 115 88.4 140 41.4 141 171 93.9 86.6 88.8 108 80.6 86.3 0 95.4 35.7 114 123 118 92.2 91.9 92 92.4 92.3 92.6 58.8 

14 111 84.8 124 98.3 125 156 70.2 69.2 58.4 91.4 85.2 81.6 95,4 0 54.6 97.9 106 102 26.4 28.4 26 27 26.4 26 154 

15 116 78.6 130 31.6 116 161 75.7 74.7 50.8 97 70.8 76.5 35.7 54.6 0 104 112 107 56.7 56.3 56.4 56.9 56.7 57 92.7 

16 64.5 36.6 26.2 72.3 27.1 57.6 30.5 30 34.5 9.2 39 24.1 114 97.9 104 0 5.9 0.75 66.7 66.3 66.4 66.8 66.7 79.6 171 

17 72.7 44.8 20.9 80.5 21.7 52.3 38.7 38.2 39.4 16.6 47.2 32.3 123 106 112 5.9 0 5.3 69.4 69 69.1 69.5 69.4 87 178 

18 68.1 40.2 25.6 75.9 26.5 57 34.1 33.6 35.3 9.2 42.6 27.7 118 102 107 0.75 5.3 0 67.5 67.1 67.2 67.6 67.5 82.2 173 

19 97.6 69.1 82 81.8 68.5 120 54.9 53.9 32.8 73.9 72.1 63.9 92.2 26.4 56.7 66.7 69.4 67.5 0 1 0.35 1 0.7 0.89 149 

20 97.2 68.7 81.6 81.4 68.1 119 54.5 53.5 32.5 74 71.8 63.6 91.9 28.4 56.3 66.3 69 67.1 1 0 0.60 1.2 1.1 1.1 149 

21 97.3 68.8 81.7 81.5 68.2 120 54.6 53.6 32.6 74.3 71.9 63.7 92 26 56.4 66.4 69.1 67.2 0.35 0.60 0 1.2 1 0.60 149 

22 87.7 69.2 82.1 81.9 68.7 120 55 54 33 74 72.3 64.1 92.4 27 56.9 66.8 69.5 67.6 1 1.2 1.2 0 0.25 0.75 149 

23 97.6 69.1 82 81.8 68.5 120 54.9 53.9 32.9 73.9 72.2 64 92.3 26.4 56.7 66.7 69.4 67.5 0.7 1.1 1 0.25 0 0.50 149 

24 97.9 69.4 82.3 82.1 68.8 139 55.2 54.2 33.2 34.5 72.5 64.3 92.6 26 57 79.6 87 82.2 0.89 1.1 0.60 0.75 0.50 0 150 

25 168 147 198 100 199 230 153 145 147 165 139 145 58.8 154 92.7 171 178 173 149 149 149 149 149 150 0 
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Appendix 2.  District no 
 

No Definition No Definition No Definition 

1 Afad depot 10 
Keçiören Ovacık sport 

facility area 
19

Kızılcahamam city 
stadium 

2 Kızılay depot 11 Sincan Water depot area 20
Kızılcahamam sport 

facility 

3 
Akyurt Kalaba 

area 
12 

Yenimahalle 75. Year 
hippodrome area 

21
Kızılcahamam Anadolu 

high school 

4 Ayaş stadium area 13 Beypazarı city stadium area 22
Kızılcahamam Kazım 

Karabekir school 

5 Çubuk city area 14 Çamlıdere city stadium area 23
Kızılcahamam Orhangazi 

school 

6 
Kalecik 

Emeklikent park 
area 

15 Güdül stadium area 24
Kızılcahamam Çağatay 

school 

7 
Kazan Saray 

mosque 
16 

Pursaklar industrial 
occupational high school 

25
Nallıhan sport facility 

area 

8 Kazan truck park 17 
Pursaklar Saray industrial 

high school 
  

9 
Kazan city 

stadium 
18 

Pursaklar Azmi Ertuğrul 
school 
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