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ABSTRACT

In this paper, we obtain generators of differential invariants for a curve family in GL(n, R). Then we define
GL(n, R) —equivalence of the curve families and develop a point of view for equivalence problem. Using
these generators, we give a solution to the problem.
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1. INTRODUCTION

The notion of affine differential geometry arose from Felix Klein's Erlangen Program in 1872.
According to this program, affine differential geometry consists of properties which are invariant
under the affine transformations. In affine differential geometry, studies have been done about
affine invariants and generators of affine invariants. Based on this, solution of the equivalence
problem has been studied also.

Differential geometry of curves has been studied for many years. It's been studied in many
aspects in the groups SL(n, R), EA(n, R), GL(n, R) which are the subgroups of the affine group.
In some of these studies, invariants such as arc-length, curvature have been examined. In [1]
centro-affine invariants, arc length and curvature functions, of a curve in affine n —space are
obtained. In addition, several authors studied the affine curves and their invariants in several
works [2-6]. Also, affine surfaces studied in [7-9].

Invariants of n curves and equivalence of n curves in SL(n,R) are given in [10]. In
SAff (n, R), the equivalence problem of two curves is studied in [11]. In this study, the system of
differential invariants for three curves in GL(n,R) is studied and by using this system,
equivalence of two curve families which consist of three curves is given. Also, it is shown that the
system of differential invariants of this curve family is minimal. It should be noted that we study
the problem under a fixed parametrization of the curves.

2. GENERATING SYSTEM OF DIFFERENTIAL INVARIANTS

For three curves x;,x,,x; a differential polynomial of these curves is given by

2 ()

P{x1,x5,%3} = P(x1, %2, %3, %", %", %3, ..., ) X5 ,xém)) for some natural number m.
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: Py{x1,%,%3}
Function f < xq, x5, xg >= - ——22
f C Po{x1.x2,X3}

function. The set of all differential rational functions is denoted by R < x4, x,, x3 >.

For an element g € GL(n, R), if f < gxq, gx,, gx; >= f < x4, x5, x3 > then the fuction f is
called a GL(n, R) —invariant differential rational function. The set of all GL(n, R) —invariant
differential functions is denoted by R < x4, x5, x3 >%. R < x1,x,, x3 > is a differential subfield
and a sub R —algebra of R < x4, x5, x5 >.

The following lemma is the standard bracket syzygy in classical invariant theory.

Lemma 2.1. For vectors xg, X4, ..., Xp, Y2, .-, Vn in R™, the following equation holds:
(X1 %2 Xpl[Xo Y2 .- Yl — [Xo X2 Xp][X1 Y2 oo Yn]— o —[x1 %2 ... X0l [Xn Y2 - Yu] = 0.
Definition 2.2. A curve x; in R™ is called GL(n, R) —regular if [x; x;" ... (” 1)] * 0.

Theorem 2.3. Let x;,x,,x3 be curves in R™ such that x; is GL(n, ]R) —regular, then the
generating system of R < x;, x5, x5 >¢ is as follows

such that P,{x4, x,, x5} # 0 is called a differential rational

[Xl xii—l) xin) x§i+1) xin—l)] [Xl . il 1) X, x1(1+1) xl(n_l)]
[xl X1 xin—l) , [X1 X' xin—l)] '
oy x0T ()

e 1 s

T T

Proof. For the group G = GL(n, R), generators of the set R(x,,7 € A)¢ with respect to a family
of vectors {x;, 7 € A} are
[Xo .. X(i-1) Xz X(ix1) - - Xn-1]
[xo... Xp-1]
where A = N U {0}. [12]

s i=01,...,n—-1, Tt e A\{0,1,...,n—1},

. - K K K H
Substituting the vectors xl,xz,x3,x1’,x2’,x3’,...,xf ),x§ ),xg ), for the vectors x; in the
R K K
above generators, we obtain generators of R(xy, x5, X3, %', x5', x3', .. xf ) ( ), ) ...)%as

[x1 ...xii_l) xy) x&“’l) ...xi"_l)] .
— s ,i=0,..,n—1,7t€A\{0,1,...,n—1}
[x1x1 X ]

(i-1) (@) (i+1)  (n-1)

[x1 wxy Py xg Y xg ]
7=0 2.1
[xl X' ...xi"_l)] ! @1)
gi—l) xgr) x£i+1) ...xE”fl)]

[x1..x

[y x1" ...xi"_l)]

[x xii—l) xgr) x£i+1) mxgnﬂ)

Firstly, we will show by induction on t that the functions e 20 ,T21
X1 %" x
(i-1) (n) (z+1) (n—1) !
E2 . | .
are generated by (n 5 ,i=01,..,n—1.

[x1x1
Let T = n. Thus the obtained function is in the generating system.
Let T>n. For t—1, assume that (2.1) is the generating system. Then,

[x5 .. xii_l) xir_l) xi”l) xin_l)]

,i=0,1,...,n—1is generated by (2.1).

[y x1" ...xi"_l)]
On the other hand, differentiating the determinant [x; ... x{"™2 xT™D x D 17 we
obtain
[x1 I | Y N e P N L
_[xl . (I. 2) il) xi‘r 1) (l+1) - xin—l)] _ [xl . xil—l) xi‘r—l) x£l+1) . xin—Z) xin)]
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Dividing both sides of the above equation by [x; x;".. (" 1)]

i-1 i+1 -1 i— — i -
[x1 P Y P P )] 2y .2l 1) X 1)x§1+1) sl

yields

[x1 X, kY [xl xq ...xi"_l)]
I mxgi—z) @ (1—1) (i+1) xgn—n] [y xii_l) (T-1) (i+1) ) (n—z) xin)]
[¢1 %1 ’ x(n 1)] [1 %, 3 x(n 1)] (22)
For the first term of the right hand side of (2.2), we get
[xq ... xir_l) xin_l)]’
[xq ... xin_l)]
r
B <[x1... xir_l)... xin_l)]> N [x1 ... xf_l)... xin_l)] [x1 ... xin_z) xin)]
- -1 -1 -1 :
1. %V [y Y] ETRES
Since all terms of the right hand side of the above equation are generated by the generators,
[x x(t 1 (n 1)]
also =~ is genereted.
[%1..x g" 1)]

One can see that the second term of the right hand side of (2.2) is generated by the induction
hypothesis.

Finally, for the third term of the right hand side of (2.2), if we put x; = x;,%, = x;/,..., %, =

-1 i—1 +1 2
xin ),xo = Xin),)ﬁ = X100 Yi+1) = Xil )»Y(i+2) = xf ).}’(z+3) = Xil ),...,y = xin )

in Lemma 2.1., then we have

[ P e 2)] [xl gD ) ) e 2)” Dy 2TV xfn_z)]
’ -1 ’ -1 ’ -1
[xl X, xin )] [xl X xf” )] [xl X xin )]
. [x xin 2) in)] [xin—l) X ... xit—l) xin 2)]
-1 1
[xq x4 xin )] 121" xin )]
) ) o [ 207D ) 04D (n=2))
Fort he right hand side of the above equation, it is easy to see that 1[ D)
X%, .
n-2) ® (1) n-2) G- 2
and 22551 are in the generating system; 21 e I ang o212 = -
[x1x1 g 7] [x1x:"xy ] [x1 21"y ]

are generated by the induction hypothesis. Thus the left hand side of the equation is generated by
(2.2).

) ) i ) (i-1) ('[) (L+1) (n—l)]
Now we will show by induction on t that the function ad

[x1..%q

o x(" 1)] , =018
e

generated by the system
(i 1) (i+1) : (n—1)]

For t = 0, X2 x[ 25 5 ,i =0,1,...,nis in the generating system.
Xq %p e x]

[ . xgl 1)x£n)x(l+1)m gn—l)] .

Let T = n, and let us assume, as the induction hypothesis, that

[x1 29" o 5" 1)] !
0,1,...,n is generated by the system.
Let 7 = n + 1. By the equation
[xl 7D () 5 (D) ...xgn_l)] ' g ealTD ey
[xl X1’ ...xi"_l) [x1 X' ...xin_l)]
[2c1 21" ...xﬁ"_z) xﬁ")] [x1 xii_l) xén) xgiﬂ) xgn_l)]
- ) I @D ) (2.3)
[x1 21" ) 1 [xq %1 ] 1

[y - xil 1) (n) (l+1) . (n—l)]r

it is easilly seen that the function s L 1)] is generated by the system.
X1 %1" %]
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Differentiating the determinant [x; ... x\" x{™ x™*Y . "] yields

s .. (i—1) én) (CEV in—l)], — xii—'z) xl(l)xén)'x](.l+1).“x](.‘n—l)]
+[x; . xil R x§n+1) x(’ﬂ) . xin_l)] +[x... xil_l) xgn) xi”l)... xi"_z) xi")].

Dividing both side of the above equation by [x; x;'... xi"_l)] gives

[y x40 0y R L e e L]
[xl Xy’ ...xi"_l)] [x1 X" x Y
g 07D 0D LG4 Dyl ) () (e2) )
+ [oq %1 o xﬁn_l)] + [xq %" xgn_l)] ' (24)

We know that the left hand side of (2.4) is generated by the system. Also first term of the
right hand side of the equation is generated by the induction hypothesis. Now, we are going to

show that the last term of (2.4) is generated by the system. If we put x; = x4, %, = x;',..., %X, =

-1 1 -2 .
xin ) » Xg = Xi ):)’2 =X Y = xi )»Y(L+z) = xé yY(i+3) = XEH ),---.)’n = Xin ) in

Lemma 2.1., then we obtain

[xl x . ("_1) xi") X1 o xii_l) xé") xfﬂ) xin_z)
_ [x1 . it 1) én) (1+1) (n—l)] [xii) X o xii—l) xén) x§i+1) xin—z)]
—[X1 ] (n 2) (n)][ (n 1) ) xil—l) xén) x§1+1) o xin—z)] = 0.

Dividing both sides of the above equation by [x; %" ... xfn_l)]z, we have
[xi") X1 o xii_l) xgn) xiiﬂ) xin_z)]

[xl Xy xTY
Cxg e xii_l) xén) x§i+1)... xgn_l)] [xf) X ... xf_l) xgn) xfﬂ)___ xin—z)]
- [y Y] [y D]
e P D a0 )
[y 2, ... x("7Y) (X%, ... xf"_l)]

Since all terms of the right hand side of the above equation are generated by the system,
™, D W (D) (-2
1 1% 2 1 b §

5 is also generated.
[g 21" ) ]

[xl xil 1) x(n+1) x(l+1) xgn—l)]
2 1 1
] is generated by the system.

[x1 %" g

Therefore, by (2.4), we obtain that

[x (i-1) (‘r) (l+1) (nfl)]

- X . -
teot (n 5 ,7=01s
[xlx1 Xy ]

Finally, we will show by induction on t that the function

generated by (2.1).
[x x(z 1) (i+1) x("_l)] L .
Fort =0, =% 1(,[,;')'] = is in the generating system.

[xq %1" g

D 00 D) ey
= 1)] L is generated by (2.1).

[xlx1 Xy

Let 7 = n, and let us assume that bxa-

Let T = n + 1. By the equation

, , , . ,
([x1 D () () ...xi"_l)]) _ R 2 i i
]

(n-1)

[xq %1" g (nfl)]

[2xq 1" g
[Xl X1’ mxgn—z) (n)] [xl (1—1) (n) (H-l) in—l)]
- n— 1)] (n 1)] ) (2-5)

[ 1" xg [xlx’ Xy
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X1 xil 1) (n) (l+1) (n 1)]

we see that (n 5 is generated by the system.
[y xy" g ]

Same as before, we obtain

T S s s hea _n x{TB D ) (D) 1)
[x121" xin_l)] [x1 21" ...xin_l)]
[X1 mx(l—l) (n+1) x§1+1) . in—l)] [X1 mxit—l) (n) (1+1) . (n—2) Xfﬂ)] 2
+ (n-1) (n— 1) ( .6)
[x1 961’ X 1 [y 1"y ]

In (2.6), we know that the left hand side, first term of the right hand side and the last term of

xl xit 1)x(n+1) (H—l) . (n—l)] )

the right hand side of the equation is generated by the system. Thus, _— x(" 1)]

generated by (2.1).
This completes the proof.

3. SOLUTION OF EQUIVALENCE PROBLEM

Definition 3.1. Let {x;, x5, x3} and {y,,y,,v3} be two curve families such that for i = 1,2,3
x;,y;ii I € R - R™ If there exists an element g € GL(n, R) such that gx;(t) = y;(¢t) forall t € I
and i=1,23, then the curve families {x;,x,,x3} and {y;,y,,y3} are said to be
GL(n, R) —equivalent. GL(n, R) —equivalence is denoted by {x;, x5, x3} =% {y1, V2, ¥3}.

Theorem 3.2. Let G = GL(n, R) and {x,, x5, x5} and {y;, v,, v3} be two curve families such that
x; and y; are GL(n,R) —regular. Fori =0,1,...,n — 1, if

[xp... xii_l) xin) x§i+1)m xin—l)] ~ [y .. yl(l 1)y(n) y1(1+1)“. yl(n_l)]
[21 21" ... Xin_l)] [viy:'- y1(n 1)] ’
[x;... xl(i_l) Xy xf”l)... xi"_l)] i yl(’ Dy, yl(l+1) N yl(n—l)]
[x 2" x (n_l)] yiy: yl(n 1)] ‘
Doy P ™ " ey Ty yl(‘“) Y]
[ 2" xin_l)] iy 3’1(n 1)] ‘

then {xy, x5, X3} ~“{ y1,¥2, ¥3}.
Proof. Let us form the following matrices:

1 [
x11(t) xﬁl )(t) x11(t) x11)(t)
Ag=| i n i La=]
@ O X4 (£) xln)(o

The inverse A;ll of the matrix AxleX|sts because the curve x; is regular. Let A;}A;l = C, thus
we have 45 = A, C. With a simple calculation we obtain matrix C as

0 0 Cin
C = 1 0 Con
0 1 cun
where
[xgn) X1 .. xin_l)] [x1 x{n) x"... xin_l)] [x1 %1 (n-2) xin)]
Cin=— . 2n = 1 y oo Cpn = 1
[x1 %1 in )] o2 2 )] [x1 %1 o )]
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By the equations given in the theorem, similarly we have 4; = A, C giving A;fol' =
A;A, " Calculating
(AY1A;11), = A)/1,A’:11 + AJ’1 (A;11), = AY1,A;11 + AY1 (_A;EAX1,A;11
= Ay, (A3 Ay, — AxlAx DAL =0,
it is obtained that A, A;! = g, where g is a constant matrix. Since det g = det (4,, Ay!) =
det A, det A7! #0, g € GL(n,R). Thus, 4, = gA,, and

m@® IO [on gun[ru® X “(t)
: : (e 1) =\ : : : : : (e 1)
Y1n(t) Yin (t) In1 Inn xln(t) Xin (t)
giving
[Yu(t)' [911 I1n] [xn(t)]
Y1n ()] Ldn1 Grnd Lx1,(8)
The last equation means that forall t € I,
y1(t) = gx,(O). (3.)

Consider the matrices

X21 X31
sz = : , DX3 = : .
Xon X3n

Set Ax!D,, = H giving D,, = A, H. We now find the matrix H which satisfies the last

equation. The equation
x21] X11 xﬁ Y [hn
Xan X1n (n D hln

let us form the system of differential equations

(n-1)
Y1111 + %11 hyp + +x11 hin = x5,

-1
X12h11 + X1 hyp + +x12 )hln = X33 (3.2)

X1nhi1 + X1 ey + +x§n 1)h1n = Xon-
We obtain the solution of (3.2) as

r -1 -1 2
b = [xo %1 ... xin )] b = [%1 %5 ... xin )] B = [0 21" . fn )xz]
1= / (n-1);” 12 T / (n-1)y’ " T (n-1y -~
120" .. xg 7] [x1 2" ... g 7] [x120 .o xg 7]

Similarly, let us form the matrix A3!D,, . By the equations given in the theorem, we obtain
Ay1D, = A:lD,, . Also recall that A, = gA,, then it is obtained

A;11sz = (gAxl)_lDyz = Aa;llg_lDyz
giving D, = g~'D,, and D, = gD,,. Thus we have forall t €
y2(t) = gx2(0). (33)

On the other hand, for D,,, similarly put A;'D, = K. Hence we get D, = A, K, and the
matrix equation
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[x31] X11 xﬁl_l) [kn]
X3n xln xi:_l) kln
giving the system of differential equations
-1
X11K11 + %11 kg + +x§711 )kln = X31
, -1
X12kq1 + x12"kgp + +x$ )kln = X33 (3.4)

e,
Xink11 + X1n'kip + +x5, Tkin = X3y

The solution of (3.4) is
’ (n-1)

X3X1 ... X
k11 — [ 341 1 ]

-1
[x1x3... xin )]

[x1 27 ... xfn_z) x3]

! -1 ’
[2¢1 x1" ... xl(n )]

Same as before, let us form the matrix A;}DyS. By the equations given in the theorem, we
obtain A}'D,, = A;!D,.. Also, recall that A, = gA,,, then it is obtained

; (n-1);’ 12 = s kin =
[x1x1".oxg 7]

[y 2" xin_l)]

AEfst = (gAxl)_lDys = A;llg_lDyg,
giving D, = g~'D,,, and D,,, = gD,,. Thus we hav eforall t €
y3(t) = gx;(2). (3.5)
Finally, by (3.1), (3.3) and (3.5), for the same g € GL(n, R) we have
y1(8) = gx1(t)
y2(8) = gx, (1)
y3(t) = gx3(t), vVt €1
which means {x;, x5, x3} ={ y1, ¥, y3}.

|
Theorem 3.3. Let G = GL(n, R) and f;(t), f2;(t), f5:(t) be C* —functions foralli = 0,1,...,n —

1, t € I c R. There exists a curve family {x;, x5, x3} such that x; is GL(n, R) —regular, which
satisfies the following equations:

[x ... xii—l) xin) x£i+1) xfn_l)] ~
PN CEY) = /i
[?51 X1 Xy ]
[xq ... xil_l) Xy xil“)... xl("_l)] B
[x ! x(n_l)] - fZi(t)
1%X1 .- X
(i-1) (i+1) (n-1)
Xy X X3 X X
[x1 1 ,3 1(n_1) 1 ]=f3i(t),i=0,1,...,n—1.
[x1x".oxg 7]

Proof. Consider the matrix A, and put A;'A, ' = B. Then we have A, ' = A, B, where the
matrix B has the following form:

0 0 f®
=t 0 AW
0 1 fua®

The matrix equation
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x'y x x™] [xy xY
11 11 - Xqq ] 11 11 ] 0 fo(®)
|.?C,12 '?C”12 '... xl(;l) I _ |.X12 ‘?CIIZ '... xig D I : ? :fl(t)
] B IR
giving the system of differential equations
211 (Ofo(®) + X' 11 (Ofi () + -+ x3 V(O fuea () = 2 (©)
x12Ofo(®) + X OH®) + -+ x5 P (Ofaa(O) = x50 (36)
%1 (Ofo(8) + X (OAE) + -+ x(0 V(O faoa(®) = X7 (0).
x11(¢)
In (3.6), if we put y(t) = ?C“(t) , then we rewrite (3.6) in the form of
X1 (0).-
fo@y®) + Y ) + =+ fu1 Oy D () =y (t) = 0. (3.7)

The differential equation (3.7) has at least one solution since the fuctions f;(t), i =
0,1,...,n—1 are all C* —functions. Let the solution be x;(t) = y(t). Thus the curve x;(t)
satisfies the first condition of the theorem.

Let
2 1 2
X111 X1 xﬂ ) X21 X1 X1 xﬁ ) X31
X1 X1p' x(n 2D x X1 Xqp' x(n D x
A, =|fz ¥z 12 2|4, =2 Mz 12 32|
5 H H H 5
X1n xln’ xfz ) Xonl X1n xln’ x§2 ) X3n
and let A;'A, = M and A;'A; = N. We obtain A, = A, M and A3 = A, N, where
[1 0 0 fo(®) ] [1 0 0 f3(® ]
01 0 f21(8) |0 1 0 f31(t) |
M= | HI E N = | : :
[0 0 1 fom-2(®) [0 0 1 f3(n 2)(t)J
0 0 0 form-1(@®)] 0 0 fam-n(®)

The above matrix equations lead to the following systems of differential equations
repectively:

211 (0 f20(8) + X1 (O fo1.(8) + - + x5O fono1y (£) = %21(E)

%12 (D) f0(0) + x15 (O o1 (6) + -+ 257 (0) fonony (£) = x22(8) (3.8)
X () fa0(8) + X (O for (8) + -+ 20 (0 fonony (£) = Xan ()
and
X11(®)f50() + 11O f51 () + - + xgl Y O f3m-1) () = x31(t)
%12 () f30(E) + x1,(O) f3:(&) + - + Xgl D B f3n-1)(@) = x32(1) (3.9)

m@mm+m@mm+- + 207V (O fann) () = X3n (D).

The systems (3.8) and (3.9) has at least one solution since the fuctions f,;(¢t),f5;(t) i =
0,1,...,n—1 are all ¢*® —functions. Let the solution of (3.8) be x,(t) = y,(t) and let the
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solution of (3.9) be x3(t) = y;(t). Thus the curve x,(t) satisfies the second condition of the
theorem and x5 (t) satisfies the third condition of the theorem. This completes the proof.
|
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