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ABSTRACT 

 

In this note, we show that a particular solution of Bernoulli equation is also the solutions of various second 

and high order nonlinear ordinary differential equations. The differential equations having solution as a 

particular solution of Bernoulli equation are listed accordingly. We have exemplified some of nonlinear 

equations having solution as a particular solution of Bernoulli equation.  
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1. INTRODUCTION 

 

Recently, Kudryashov [1] uses logistic function (the sigmoid function) [1, 2] for finding exact 

solutions of nonlinear differential equations. Clearly seen that logistic function, 
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where   is independent  variable on the complex plane, is the solution of the first order 

differential equation so called Riccati equation [1,2]: 
 

2 0Q Q Q    .                                                                                                                     (2) 
 

where 
Q  is the derivative of 

Q
respect to 


. In this study, motivated by Kudryashov [1], 

we extend his idea to that of a particular solution of Bernoulli equation 
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One can easily see that the function  
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is a particular solution of the Bernoulli equation and the equivalent of Eq.(4a) can also be 

presented in form of hyperbolic tangent functions in the following formula: 
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Furthermore, for 2k  , Eq. (4a) reduces to the logistic function with appropriate choices of 

coefficients and in the same manner Eq. (3) reduces to celebrity Riccati equation with, for 

example, for 𝐴 = 1, 𝐵 = −1 . 
Hence, the aim of this note, inspired by Kudryashov [1], is to find some nonlinear ordinary 

differential equations of the higher orders with exact solutions in the form of Eq. (4a) (or Eq. 

(4b)). Also, to show that there are nonlinear partial differential equations having solutions in the 

form of Eq. (4a) or equivalently as Eq. (4b). Recently, Bernoulli equation is considered as an 

auxiliary equation to obtain the exact solutions of the higher order nonlinear partial differential 

equations [21].  

 

2. DETERMINATION OF THE NONLINEAR ORDINARY DIFFERENTIAL 

EQUATIONS OF THE SECOND ORDER WITH IDENTICAL SOLUTION 

 

Differentiating the Eq. (3) with respect to  , the following second order differential equation  
 

 
1 , 1kQ AQ BkQ Q k  

                                                                                                    (5) 
 

is obtained. It is noticeable that the Eq. (4a) (or Eq. (4b)) satisfies Eq. (5) for fitting choices of 

the coefficients. 

In addition to Eq. (5), by using Eq. (3) one can achieve three additional ordinary differential 

equations  
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which have the solutions in the form of  Eq. (4a) or equivalently as Eq. (4b) . Supplementary 

second order ordinary differential equations having solutions in form of Eq. (4a) (or Eq. (4b)) 

may be presented in the following manner. 
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2 1 ( , ,...)( ) 0, 1k k kQ AQ ABkQ BkQ F Q Q Q AQ BQ k  
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where ( , ,...)F Q Q
are some  dependencies on ,Q Q

and so on. Now, let us confer the 

solution method for finding nonlinear ordinary differential equation in the form of Eq. (4). 

 

3. THE METHODOLOGY 

 

Now a day, there is collection of methods for finding exact solutions of nonlinear differential 

equations. For the sake of limited space, we will mention only a few of them: the tanh method [3-

7], auxiliary equation method [8-13], simplest equation method [14-16], (𝐺′/𝐺)- expansion 

method [17-20] etc. 

However, the aim of this note is to present exact solutions of nonlinear partial differential 

equations in terms of the list of the Eqs. (9)-(12) and give some examples of the application of the 

methodology suggested by Kudryashov [1]. 

Hence, consider a nonlinear partial differential equation  
 

, , , , ,( , ...) 0x t xx tx ttP u u u u u u 
                                                                                                       (13) 

 

Using travelling wave transformation  x ct   , and assuming ( , ) ( )u x t y  we get 

the nonlinear ordinary differential equation: 
 

, ,( , ...) 0R y y y y                                                                                                                (14) 
 

Assuming 0 ( )y a Q   in Eq. (14) and comparing the latest form of Eq. (14) with a suitable 

equation of the list (9)-(12) we can find the solution in form of equation Eq. (4a)(or Eq. (4b)) with 

free parameters.  

Now let us exemplify the solutions of selected nonlinear partial differential equations in form 

of the Eq. (4a). 

 

3.1. The Burgers equation  

 

We now show that Burgers’ equation has a solution in form of Eq. (4a). The Burgers’ 

equation can be given as 
 

2 0t x xxuuu u                                                                                                                 (15)  
 

Using the transformation  x ct   , where 0c  and 0   and assuming 

( , ) ( )u x t y   we get following ordinary differential equation  
 

22 0y yy yc                                                                                                                     (16) 
 

Eq. (16) is in the similar form of Eq. (9) where ( ) 0F Q  , 
 

1 0kQ AQ BkQ Q  

    
 

As a result of the comparison we find the solution of the Burgers Eq. (15) in the form   
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where 
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, so Eq.. (9) and Eq. (15) are the same in the 

case. 

 

3.2. Burgers–Fisher equation 

 

The Burger-Fisher equation can be given as 
 

2

t x xxu uu u u u                                                                                                         (17) 
 

Using the transformation  x ct   , where 0c  and 0   and assuming 

( , ) ( )u x t y   we get following ordinary differential equation  
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Eq. (18) is in the similar form of Eq. (10) where ( )F Q c  , 
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As a result of the comparison we find the solution of the Burgers-Fisher equation (Eq. (17)) in 

the form   
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Eq. (10) are the same in the case.                         

 

3.3. Hyperbolic equation with power-law nonlinearity  

 

The hyperbolic equation with power-law nonlinearity can be given as 
 

2 1n n

tt xxu u u u u                                                                                                      (19) 
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Using the transformation  x ct   , where 0c  and 0   and assuming 

( , ) ( )u x t y   we get following ordinary differential equation  
 

 2 2 2 1 0 n nc y y y y                                                                                          (20) 
 

Eq. (20) is in the similar form of  Eq. (8), 
 

2 1 0, 1 k kQ AQ ABkQ BkQ k
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As a result of the comparison we find the solution of the hyperbolic equation with power-law 

nonlinearity, Eq. (19), in the form   
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3.4. The KdVequation with power- law nonlinearity 

 

The Korteweg–de Vries (KdV) equation with power-law nonlinearity can be given as  
 

=0n
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Using the transformation  x ct   , where 0c  and 0   and assuming 

( , ) ( )u x t y   we get following ordinary differential equation  
 

3 0ny y a y yc                                                                                                          (22) 
 

Eq. (22) is in the similar form of the following equation 
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which is obtained directly by differentiating Eq. (8). 

For example, choosing  1/ 2k  in Eq. (23) one easily gets  
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3.5. The KdV type equation 

 

The KdV type equation can be given as 
 

2-b =0x

n n
t xxx xu u au u u u                                                                                               (25) 

 

Using the transformation  x ct   , where 0c  and 0   and assuming 

( , ) ( )u x t y   we get following ordinary differential equation  
 

3 2 0n ny y a y y b y yc                                                                                                  (26) 
 

Eq. (26) is in the similar form of the following  
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which is obtained directly by differentiating Eq. (8). For 1k n  , the Eq. (27) is in the form 
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a
n k c A a ABk bk k           ,  Eq. (25) and Eq. (29) are the 
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3.6. Kuramoto-Sivashinsky equation  

 

The Kuramoto-Sivanhinsky equation can be given as 

 

                                                                      (30) 

 

Using the transformation  x ct   , where 0c  and 0   and assuming 

( , ) ( )u x t y   we get following ordinary differential equation  
 

2 2 3 4 (4) 0cy y y y y y y                                                                      (31) 
 

Eq. (31) is in the similar form of the following  
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which is obtained directly differentiating Eq. (3). 

For 2k  , the Eq. (32) reduces in to the form 
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4. CONCLUSION  

 

In this note we have revealed that the solution of Bernoulli equation given in form of Eq. (4a) 

(or Eq. (4b)) is a solution of many nonlinear equations. This study, in one way, is the extended 

form of the logistic function solution of Riccati equation to Bernoulli equation which gives more 

responsive solutions compared to logistic function solutions. We have exemplified that the 

solutions of some of well-known nonlinear equations are expressed in form of Eq. (4a) (or Eq. 

(4b)). It is apparent that the solution of Bernoulli equation in form of Eq. (4a) (or Eq. (4b)) may 

be employed for producing exact solutions of various nonlinear differential equations.  
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