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ABSTRACT

In this paper, we define the Krasner hypermodule of generalized fractions of a hypermodule M over a
Krasner hyperring R.it Misan R -hypermodule, then we construct the Krasner hypermodule of
generalized fractions U "M consisting of all fractions m with m € M and (ul e Uy ) eU .

(oon)

we show that U "M is a Krasner hypermodule. Then, we consider the category of Krasner hypermodules
and prove that the direct limit always exists.

*
We consider the fundamental equivalence relation £, and prove some results about the connections between

the Krasner hypermodule of fractions and the fundamental Krasner modules, direct systems and direct limits.
Keywords: Krasner hyperring, Krasner hypermodule, direct limit, fundamental relation, generalized fraction.
2010 AMS Mathematics Subject Classification: 16Y99, 20N20.

1. INTRODUCTION

Hyperstructure theory, introduced in 1934 by Marty [16], is studied from the theoretical point
of view and for its applications to many subjects of pure and applied mathematics (see [4]) like
geometry, topology, cryptography and code theory, graphs and hypergraphs, probability theory,
binary relations, theory of fuzzy and rough sets, automata theory, economy, etc. A hypergroup is
an algebraic structure similar to a group, but the composition of two elements is a non-empty set.
The hypergroup theory have applications to several domains and some books have been written
on this topic, for example see [5, 7, 8, 23]. Mittas [17] introduced the notion of canonical
hypergroups. Several kinds of hyperrings are introduced and analyzed. One of the important class
of hyperrings is Krasner hyperrings [13]. Davvaz and Leoreanu studied hyperrings in more details
in [9], also see [11, 22, 23]. Moreover, one of the class of algebraic hyperstructures satisfying the
module-like axioms, as a generalization of module, is the class of hypermodules [1, 2, 3, 4, 9,12,
21]. There are various types of hypermodules as a generalization of modules. In [9], Davvaz
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studied the concept of HV -modules of fractions. In [20], Sharp and Zakeri introduced the

concept of modules of generalized fractions.
The purpose of this paper is as stated in the abstract. We continue this section with some basic

and fundamental concepts. For details and definitions refer to [5, 7, 8, 10, 21]. Let R be a non-

empty set. Then, a mapping +: R xR —2"(R) is called a hyperoperation on R , where
P*(R) is the family of all non-empty subsets of R . The couple (R,+) is called a
hyperoperation. For non-empty subsets A, B of R and X € R , by A+ B we mean the set

Ja+b

aeA

beB
AndA+X = A+{X}, B+x =B +{X} and also-A = {-a: aEA}. A non-
empty set R together with a hyperoperation "+ and a multiplication "." is called a Krasner

hyperring [13] if it satisfies the following:
1) (R ,+) isa canonical hypergroup[17], i.e.,
i. forevery X,y ,zeR, x+(y+2)=KX+y)+z,
ii. forevery X,y eR,X+y=y+X,

iii. thereexists 0 € R suchthat 0 +X = X forall X €R
iv. for every X €R there exists an unique element denoted by -X € R such that

0 ex+(x),

v. forevery X,¥,Z €eR,Z eX +Y impliesy €-X+Z and X €Z-Y .

) (R ) ) is a semigroup having 0 as a bilaterally absorbing element, i.e.,

i. forevery X,Y¥,Z €R, (X.y).z = X.(y.2),

i. X.0=0x=0forall X eR .

(3) The multiplication "."" is distributive with respect to the hyperoperation "+ | i.e., for
every X,Y,Z €eR, X.(y +2) =Xy +X.z and (X +Yy).Zz =XZ+Yy.zZ.

The following elementary facts in a hyperring easily follow from the axioms:

1) - (-a) = afor every & € R ;(2) 0 is the unique element such that for every a € R,

there is an element-a € R with the property O ea+(-a) and—0=0; (@)
-(atb)=-a-b foran a,b eR ;@ -(ab)=(-a)p=a(-b)foran abeR .

a Krasner hyperring R , if there exists an element 1€ R such that la=al=a for every
a € R then the element 1 is called the identity element of the hyperring R . In fact, the
element 1 is unique. Further, if a = ba for every a,b € R then the hyperring R is called a
commutative hyperring.
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Let (R ,+, ) be a Krasner hyperr ing. The canonical hypergroup (|\/| ,+) along with the
map *: R xM —M s called a Krasner hypermodule over R if for all I}, I, € R and
m,,m, e M the following axioms hold:

1) rE(m+my)=r*m+r*m,;

2) (R+n)*m =r*m+r,*m;

3 (n.r)*m =r.(,*m);

4) 0;*m, =0,

Throughout the paper, for convenience, by hyperring R , we mean a Krasner hyperring with
1R and by hypermodule M we mean a unitary Krasner hypermodule over R , unless otherwise

stated. In every unitary hypermodule M , forevery m € M , we have (-lR )* m=-m.

Let (|\/| ,+)and (N ,+')be two hypermodules over a hyperring R . A function
f :M —N that satisfies the conditions:

p f(x+y)ef ()T (y):

2 f(r=y)cr=f(x)

forall r € R andall X,y €M , is called t an (inclusion) homomorphism from M into
N . If in (1) the equality holds, then f is called a homomorphism or strong (good)
homomorphism.

2. HYPERMODULES OF GENERALIZED FRACTIONS

The first time, the concept of modules of generalized fractions on an arbitrary commutative
ring was introduced by Sharp and Zakeri in [20]. Our goal in this section is to introduce a
hyperstructure for these modules.

Definition 2.1. [20] Let R be a ring and Nbe a positive integer. A subset U of
R"=R xR x...XR (N factors) is said to be triangular if
1) U isnon-empty;

5]

2) whenever (ul,...,un ) eU , then (ul s U ) €U for all choices of positive

integers ¢ ,..., &, ; and

no

3) whenever (Uy,...,U, )and (Vy,....v, ) €U , then there exists (W ,....w ) U

i i
such that foralli =1,...,N,W; €U; MV, whichU; = > RU;andV; = D RV, .
i=1 i=1
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We consider Definition 2.1 for an arbitrary hyperring R . Then, there are lower triangular
matrices H,KeD, (R )such that W' eHu" "MKV where as  usual,

wh=[w,,..w,] e

In this paper we assume R is a hyperring and U is a triangular subset of R", where Nis
a positive integer. The most of our notations are similar to the notions in [20]. For

HeD, (R) we have adj(H): |H||n. For a sequenc(Sl,...,Sn)EU , we shall
. Il T

denote the matrix [S1 ,...,Sn] by S .

Lemma 2.2. LetU,V €U and suppose that there exists H = [hij ] eD, (R)such that

V € HU Then for all 1<i <n, |Hi |Ui €V, , where in H; exists a submatrix 1 X1 of

H which is located at the left top.
Proof. We prove the lemma by induction on i .1fi =1 thenV € |H1|Ul = hllul. Let for

each i=12..k, |Hi |ui ev;. According to the assumption
Vi € hytty oot By Uy 4 - Thus, we obtain

|Hk |Vk+1 S |Hk |(hk+n“1: oo Py gty )+ |Hk |hk+1k+1uk+l‘

Therefore, we have
|Hk+1|“k+1 e_|Hk |(hk+11”1’ oo Py )+ |Hk |Vk+1-
Now, according to the assumption |Hk+l |uk+l eV, -0

Lemma 23 LetV,u €U and suppose that there exists H,KEDn(R)such that

2
n-1’

vl eHu" NKu".Then |DH|-|DK|e Rv] +...+ RV

matrix diag(vl, sV )

where D is the diagonal

Proof. The proof is similar to the proof of Lemma 2.3 in [20]. O
Proposition 2.4. LetM be a hypermodule over a hyperring R . Consider therelationl! on
M xU defined as follows: forb,c € M and(ul,...,un),(Vl,...,Vn)eU , We write

(b,(ul,...,un))D (C,(Vl,...,vn )) precisely when there exist(Wl,...,Wn) eU and lower
triangularmatrices H,KeD, (R) such that w' eHu" nKv' and

|H|b - |K|C MW ,M = . Therelation| | is an equivalence relation on M xU .
Proof. The proof is similar to the proof of Proposition 2.4 in [20]. [J
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By using the notations of Proposition 2.4, for b €M andu €U , define the formal

b ]
symbol — to be the equivalence classes of LI containing [b,u] .Let U ™M denote the set of
u

all equivalence classes of /. Our immediate intention is to furnish U™M with the
hyperstructure of a hypermodule.

Lemma 25 LetM be a hypermodule over a hyperring R . Leta,b €M and
(Sl,...,Sn ),(tl,...,tn )EU. Suppose that(ul,...,un ),(Vl,...,Vn )EU and
H,K,P,QeD, (R )aresuch that
u' eHs' "Kt" and v' ePs’ nQt'.
Then inU "M for all H,K,P,Q e D, (R )which the condition 3 of Definition2.1 is

true, the following sets

A={S\uT eHs AKt",c e|H|a+|K|b},

B = {s_\w ePs” AQU ,d e|P|a+|Q|b}

Hla+[Klo _[pla+[al»
u v
Proof. The proof is similar to the proof of Lemma 2.6 in [20]. [J

Lemma 2.6. Suppose thata,a’,b,b’ e M and(sl,...,sn),(s' ...,Sh),(tl,...,tn),

are equal. We show that the sets A and B by Jrespectively.

1
(tl',...,th)eu are such that, inU™M , ::::andfzi):. Suppose  that
(Uy,ey ), (U, .e0u) ) €U and H,K,H',K'eD, (R )are such that
uT eHST mKtT .andu”™ eH's™ NK't™ . Then inuU™™™m | for all

HKH,KeD, (R )Which the condition 3 of Definition 2.1 is true. Then, the following
sets

A={5\ uT eHs' mKtT,CeHa+Kb},
u

B = {d— |uT eH's™ AK't",d eHa+ K'b}
u

are equal.
Proof. The proof is similar to the proof of Lemma 2.7 in [20].0,J
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Now, it is a straightforward matter to show that U"™m may be given a natural
hypermodule  structure. ~ The  addition is  such  that, if abeM and

(SpseesSy ) (tysent, ) €U then
a L b _ |H|a+|K|b
(sl,...,sn) (tl,...,tn) (ul,,,_,un)

for any choice of (Vl,...,Vn)eU and H,KeDn(R) such that u' e Hs' NKt'

1

-
where as usual ST = [S1 yes S, ] , et cetera. The zero of this hypermodule is
0
by tn]

for any choice of (U1 e Uy )GU . The scalar multiplication is

a ra
r —

(sl,...,sn) _(Slwsn) l

forreR.
Lemma27.U "M together with the above hyperoperation (+), is a canonical hypergroup.
Proof.Let E,E,Eeu'lm , w =(W1,...,Wn),t =(t1,...,tn)EU and
uv s

H,K,P,QeD, (R) suchthatt” e HU" nKv'andw™ ePs"™ nQt" . Then

[a b] c _[Hla+|Kp ¢ [QfH|a~+|l|K|b+[Plc

—t— [+ — = + .

u v S t S W

Ontheotherhandw '™ e Ps" "QKv' andw ' elw’ nQHu" . Therefore
(o). 2. ik e_falerioc el

vV S u W W

u
Hence

u
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a ) a . ) a
Let —eU M and we consider —eU M as theinverse —eU M. If
u u u

H=K=1eD,(R), then u’ eHu" NKu'.and 0€|H|a—|K|am u,,. therefore

0 a -a . a . a b b a _ .
— e —+—. It is easy to see that for each —,—eU nM , —+—=—+—".Since M is a
U u u u v u v v

. a b ¢ c a b
canonical hypergroup, by Lemmas 2.2 and 2.5, if —e—+—, then —e-—+—and

vV s S u v

b a ¢
e
Vioou s

Proposition 2.8.(U ™M ,+,.)is a hypermodule.U'nl\/l is called the hypermodule of

generalized fractions.
Proof. It is straightforward. [

Proposition  29. LetMj and M ,be two hypermodules andf : M, —>M,be a

homomorphism.  Then, the mapU™f :U"M, ->U "M, byU "f (gj = ﬁ is a
S S

homomorphism andU "M becomes a functor from the category of hypermodules to itself, and
it is easy to see that this functor is covariant.

ab -n . -n . .
Proof. Suppose that —, —<U M1 and I € R . First we show that U ' f is well-defined.
s t

a b
Let—=—, (rl sl ) eUand H,KeD, (R )such that
s t

r' eHs' NnKt' and |H|a-|K|bm[nZ-lR rile;t@.
=
Then, for some M,,...,M_ €M we have
@ #|Hfa-[K]p S £,
Since f is a homomorphism, it follows that -
@¢|H|f (a)-|K|f (b)mi r.f(m,).
i=1

Thus, we obtain

u"f (3]:m=w:wf [%)
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Therefore, U "f is well-defined. Moreover, U "f is a homomorphism. Let —,—eU M Ml‘
st

reR, (u,..u,)eU and HKeD, (R)suchthat u™ e Hs" NKt' . Therefore, we have

e (222) - ] )i )i 0
@), 0 (a}u-nf (bj

Similarly, we obtain
- r.a . a
(Wit il BT RLY 3 g

S S

This proves that U f isa homomorphism. Let 2: M — M s identity map, it is easy

toseethat U"2:U"™M —U™ M isidentity. Let f :M —N g:N —Pare

a -
homomoephisms of hypermodeles, — €U n M and I €R . Then

u™m (fog)[ij goi(a) =U"go (fga)jzu Mgou Mt (:)

Therefore, U ™ is a covariant functor. If f :M —>N andg: M —N are two

m -
homomorphisms of hypermodules and — €U n M , we have
u

0[50 800 ] )

u™(rf )(m} rf(m)_ 1m)_ g (Tj

u

So, the functor U ™ is additive. OJ
Proposition 2.10. The functorU s right exact.

Proof. Suppose that
M'—5M—25M"——0

is an exact sequence of hypermodules. We prove thatU "M '—2—" U "M
— 9 3U"M"——0is exact. We show that U "Q is an epimorphism. Let
1€U'”M". Since § is an epimorphism, it follows that there exists m M such that
u
g(m)=m" . Thus, we have
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U-ng(mjzg(m):m"_

u u u

Therefore, U '”g is an epimorphism. Now, we have gof =0 . By Proposition 2.9,
- - . - - S m
U ngoU Nt _u n(gof):U n(0):0 Cand MU ckerU ng . Let— , where
u
meM and u €U , belong to kerU "' Q . This means that there exist (t,,....t, )€U and
-1 . .
HeDn(R)such that t' eHs' and |H|g(m)e(nz Rtijm”,Slnce gis an
i=1
epimorphism, it  follows  that there  exist ~ M,,...,M_, €M such that
n-1
g(JH/m)e > tg(m,). Hence,
i=1
n-1
[H/m->"t;m, ckerg =Imf .
i=1

Thus, forsome m’' e M ',

& #|H|b - f (m')m(i RtijM :

§ f (m' - -
Thus,inU "M | E: ( ) Therefore kerU ”g < ImuU Nt o
S t
Let R be a hyperring. The triangular subset U "of R" is expanded [20] if, whenever
(ul,...,un )EU "and | is an integer such that O<i <n, it is the case that

(ul,...,ui ,1,...,1)€U "also. In particular, this means that U 'contains(l,...,l).For a
general triangular subset U of R " we let U_ be the set of all sequences (Vl,...,V n )e R"

for which there exist i el with 0<i <n and (ul,...,un)eU such that

y for j=1...,1,
ViTl1 for j=i+1...,n.

Lemma 2.11. U_ is the smallest expanded triangular subset of R " which contains U .

Proof. First we show that U_ is a triangular subset of R " Forevery (ul,...,un )EU , With
choice i = n, we define vj = uj for ] <n.we have(ul,...,un)z (Vl,...,Vn )EU_
Then,U gU_, ) U_ # . Now, let (Vl,...,Vn )EU_ Thus, for 0<i <n and
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(ul,...,un)eU we have (vl,...,vn):(ul,...,ui ,1,....,1)and let ..., €l .

-
Then,(ulal,...,ug” )eU and (v](_)ﬁ',...,vg"):(ufl,...,u. ! ,1,...,1). So, according to the

definition ofU_, (vfl,...,vr?n)ea. On the other hand, let (Vl,...,Vn EU_and

(Wl,...,Wn)EU_. Thus, for some J <n,0<i and (ul,...,un),(ul',...,u;)eU ,
we have

(vl,...,vn)z(ul,...,ui 11) and (Wl,...,wn)z(ui,...,u’j 11)

Since U s triangular subset, it follows that there exists element (Sl yeenr Sy )GU such that
for 1<k <n, s, €u, NU, . Letl < jand set (tl,...,tn):(sl,...,sj ,1,....1), it is
Lt

easy to see that (tl,.. , n)EU_and for 1<r<n, t, ew, NV, . Therefore, Uis a

triangular subset of R " . Now, let U ” is expanded triangular subset of R " which contains U .

By definition, it is easy to see thatU_ eU’. So, U_ is an expanded triangular subset of R "O
Proposition 2.12. LetM be a hypermodule over a hyperring R and assume that U is
expanded. Letm eM ; U,V €U andH e D, (R )such thaty™ e Hu' . Then

m |Hjm
y — ="
u V
u-m
) n____Mm
(ul,...,Un,l)
0 m
3) Ifme ZR“i M .then —=0.
= u
m
g 1f 1™ _0 then —=0.
u u
Proof. (1) According to assumption, we have V' eHu' mlan and
m [Him
Oe|H|m— I, |H|m , Then by defined —:%.
u

The proofs of (2) and (3) are obvious and similar to the proof of (1).

Upm

(4) Since =0, it follows that there is W=(W1,...,Wn)€U and

u

H:[hijJeDn(R) such that w' eHu' and |H|unme(2RuijM, but
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n n-1
w, e hu =hu +>hu. thus h.u ew, th : therefore
i=1 i=1

n-1 n-1
|H|unm el—[hii [Wn - h u. Jm On the other hand, we have
-1

th (th ,JmiRwi 2D
i=1
So, we obtain
n-1 n-1
hw m m[ZAWijM O,

By using (3), we obtain

Wy w7
[Hw ym
(Wl,...,W n-l'Wf%)

Hm _m
followsthat ——=—=0. O
W w
EXAMPLE 1. Let M be a hypermodule over a hyperring R . Let fl,...,f be fixed

n

[Hjm

—0and according to (2),"—— =0. Since V' e Hu"
w

Thus,

elements of R, and set (fl,...,fn )e R" . Suppose that
U, :{(flal,...,fn“"): o, €lJ for all i=l,...,n}.

It is easy to see that U, # J and for (gl,...,gn)eUf and ..., 3, €Ll we have
((g’lﬁl,...,gnﬁ")eUf Let (flﬂ-l-,,_,,fnﬁn),(fla-l-,,_,,fnan)euf . if for 1<i<n, set
% ::max{ai,ﬂi} H= dlag( £ ..,fnyn_a”)and K=diag(f171"”1,...,fn’"’ﬂ"),
then H,KeDn(R), (flyl,...,fn’")eU and

[frf0] enH[fofe] Ak fnT

Then U, is a triangular subset of R " . we denote U, "M by M,

3. DIRECT SYSTEM AND DIRECT LIMIT OF HYPERMODULES

The construction of the direct system and direct limit is similar to the usual module theory
(see [12, 15, 18]). In [19], Ghadiri and Davvaz considered the category of HV -modules and
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prove that the direct limit always exists in this category. Direct limits are defined by a universal

property, and so are unique. Also, already Leoreanu [14, 15] and Romeo [19] studied the notions
of direct limits of hyperstructures.

A partially ordered set | is said to be a direct set, if foreach i, j €l there exists k e such

that 1 <k and J <k . Let | be a direct set and V the category of hypermodules. Let
(M i )iel be a family of hypermodules indexed by | . For each pair i, J el suchthat | < j,
let ¢J' M P M j be a homomorphism and suppose that the following axioms are satisfied:

1) @' isthe identity forall i €l |,

2) ¢ =¢ ¢J' whenever I < j <Kk .

Then the hypermodules M ; and homomorphism ¢J' are said to be a direct system
M :(I\/Ii , ¢J' )over the directset | . Let M :(M - ¢J' )be a direct system in v . The
direct limit of this system, denoted by um |\/|i ,is a hypermodules and a family ofhomomorphism

a; . |\/|i - um |\/|i, with & =q; ¢J' whenever 1 < j satisfying the following universal
mapping property:

for every hypermodules X and every family of homomorphism fi . |\/|i — X whit

f, =f j¢? , whenever 1 < j, there is a unique strong homomorphism /3 : [f# M, — X
making the above diagram commute.
First of all, we define a relation <on U as follows:

For (Up,oUy )y (VysoV )€U we set USVif and only if there exists
HeD, (R)suchthatv’ eHu' .

We show that <is a quasi-order onU . With choice H = |n, for every U eU ,
U eHu". Then < is reflexive. Let UVW €U , v <W and U<V also
H,KeD,(R)suwch that W' eKv'and V' eHu'. 1t is clear that

n
HKeD, (R) andW ' e KHU" . Therefore, the relation <is aquasi-orderon U .

50



Krasner Hypermodules of Generalized Fractions / Sigma J Eng & Nat Sci 9 (1), 39-62, 2018

Let U,V €U . Then, there exit W el and H,KeD, (R) such that
W' e KvT mHU" Hence, U <W andV <W and U is a direct set.

REMARK 1. Let  =(g,,....d, ), f =(f,,....f,)eU and f <g . By Example 1,

m
U, cU and we can build the hypermodule M { . For every o e define the
f Lfpn
1 - ewlin
homomorphism

m

DNt

Moreover, for «,...,a, €[], we show that there exist f3,...,[3, €[l and

KEDH(R)such that [gfl...gf"]T eKl:flal...f a”:IT. sine f <g, by

p My UM by p -
(fl peenf

n
definition there isH=[hij:'eDn (R)such that [gl...gnT eHI:f1 . ]T :
Therefore, for 1<i <n,g, eh, +...,h,f, . set =, +...+,, for some kij
which 1<i ,j <n . wecanwrite g/ ek, f.*,... k. f%anditfor 1<i <j<n,
kij =0, then K[kij]eDnR and [gfl,...,gn”" :IT eKl:flal,...,fn"‘n]T.
Lemma 3.1. Let(U ,S) be a quasi-order triangular subset of R " ; f ,g €U and f <g,
thenfor m e M , (floﬁ,...,fn"’”)euf ) (glﬂl,...,gnﬂ")eugandKeDn (R)we
define thehomomorphism

m |K|m

I, :M, >M_ by II, =
g g g flal,---:fnan (giﬁlgnﬁnj

such that
[gf’l...gfﬂT eK[flal...fn“"]T. 1)
Also set{Mf T |f <g and f ,geU }isadirectlimit on direct setU .
Proof. According to the above comments, there exist K e D | (R) and f,,..., 3, €l] such

that the relation (1) holds. So, let there exist K,K'eD (R), A,...,f, €[l and
B,..., B, €] such that

T

[gfl...gnﬁ"]T eK[f . fo T and [gf’f...g,ﬁ]T eK[f . f2]. @
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For 1<i <nconsider » =max{g ,8'}, D=diag(y,—p,...7,—f,) and
D' =diag(y, - f.....7, — ;) - Thus

[ {h..grf“]T eD[gf...gF ]T < DK[f=..f" ]T; @3)
and
[g{l...g,ﬂT eD'[gf’f...gnﬂ"' ]T c D’K’[flal...fn“" ]T.
“ Then, we obtain
|Djm _ m D'|m m

(9{1,--.,9%”) B (gfl,---,gﬁ”) " (gfl,-..,gﬁ”) ) (gfi,--.,gnﬁh) |

So
|KD|m |K|m |K'D|m _ |K'|m

(9171,---,95”):( fl,---,gnﬁ”) " (9171,---.9%”) B (gfi,--.,gnﬂh) |

Also, according to the relations (4) and (1) we obtain
|KD|m m kD

m

Hence

m \K\m \K’\m m

) | (oftst) T (ofaf) (1)

Therefore, the above function is independent of the choice K and ,Bl,...,ﬂn . Now, let in

’

M., m m . Then, there exist H,H'EDH(R)and

(ff‘l ..... f,f‘”) (flal,...,f,f‘”)

Virewor ¥y €L such that

@¢|H|m-|H’m’m(ini7ijM ,
and -
[t 80T eH[fofo ] ARRE 4T ©)

Then there exist K e D, (R), ,,..., 8, €Ll such that

[9f..90 ] exH[fa 0] ARH[fA £5T

Furthermore, according to the relations (1) and (5), we obtain
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n-1
@ # |KH|m - |KH'|m'm(z RIK|K f jM
i=1
By Lemma 2.2, we have

n-1
D # |KH|m-|KH’|m’m[z R giﬂ'jM .
i=1
Therefore,
m |KH|m

U (g ) [ (oesf) ™| ()| (el )

Now, we have

m’ |KH|m |KHm m’

)| ) osh) )

Then Hgf is well-defined. Similarly, we can prove that Hgf is a homomorphism. Now, we

show that {Mf T, If <g and f ,geU }is a direct limit on direct setU . If
f eU | Itis clear that Il ; : M; —M; is identity mapping. Let f v J ,heU such that
f <g <h, we show that diagram

Iy
.E‘lff_r ? - ﬂ’fh
n& A
M,
is commutative. Let (flal,...,frﬁx”)e M, HK,LeD,(R), By,.... 5, €ll,

VirveeorVy €L and 1,..., 1, €l] such that

[gfl...gf"]TeK[flal...fn“"]T and 1, m =

[hl’l...hn“TeL[gfl...g'”"}T and TII,,

n
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i.e., we have

[hzhp T eLk[fofo] AH[fe. 10T,

n

m |LK]|m [Hjm
th = =

(flal,...,frf’“) (h{l ..... h,{nj (h{l ..... hr{n)

Hh o] RS e -
g gf
(ff‘l ..... fn”) (ff‘l ..... fn“”]

Then, {l\/lf Nu | f<g ad f ,geU }?is a direct limit on direct set U .

Therefore, there exists the direct limit M ¢, i.e., [igg M, .0

Let X be the disjoint union \UM ; , define an equivalence relation on X by @, [ ay,
a €M, a, eM if there exists an index h>f ,gwith 7 8 =d,.a,. The
equivalence class of d; is denoted by [a, ].Suppose that X/ [ is the set of all equivalence
classes. It isclear that @ . 7 g8y for g >fin X/ [. Now, for reAand
a ] ,[ag ] e X/ [J we define

[a, ]@[ag]z{[x”x ca, +a, where a, =dla, ,a =gfa, for some h>f ,g }

rofa ]={[x]jx era }.

Lemma 3.2. [12] The hyperoperations €@ and o are well-defined.
Lemma 3.3. (X/ 0 ,(—D) is a canonical hypergroup.

Proof. Suppose that [a] a’ eX/ 1 andk >f ,g,h. sSince M, is

associative, it follows that

’ ” ’ 14
(ﬂ'fkaf +7Tgkag)+”hkah =& +(7Z'gkag +7Z'hkah)-

B N R RSN R |

Therefore, (X/ 0 ,(—B) is associative. other conditions of canonical hypergroup can obtain
easily.C]
Proposition 3.4. (X/ ,®, O) is hypermodule over R .
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Proof. Suppose that Iy,F, €R and [af ],[aé]e)(/ Oandk >f ;g ,h. In the

hypermodule M |, we have
’ !
rl((fszaf + 77y, )):(rlﬂfkaf +1,7,,8) ).
(r1+r2)7[fkaf =L 7 & +0L 7,8

(rlrz)”f k& = rl(rZ 7 k8 )

Therefore, we have
([ J@[a; ) =(rofar J+rofa; ])
(n+n)[a [=nofa J+ro[a ],
(rr,)e[a ]=ro(r,o[a ]). O
Proposition 3.5. |_et(Mf T )be a direct system of hypermodules indexed by | . Then, the
hypermodulelU "M is i@ M .
Proof. First, we show that hypermodule X/ [] is g M, . We define ¢, : M; =X/ [J

given by a; |—>[af ] , and consider the following diagram

X/ ~

‘{
g ﬂff
1"! #

M,
So, ag(ﬂfgaf )=[7Z'fgaf :|=[af ]=af (:’:lf ) Therefore, @77y o = O .

Hence,the diagram is commutative. Now, let M be a hypermodule  and

{¢f |(of ‘M, > M, } be a family of homomorphisms with ¢ = @ 7z, . Now, we

X
define 3 T —> M by [af ]H({)f a, . We show that /3 is a homomorphism and so the

universal mapping property holds. First, we show that ﬂ is well-defined. Suppose that

[af ]:[bg} Then, there exists N >f ,g such that 7Tt o8 =7Tghbg. Hence,
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D7 1 & = @,y 8y and S0 @ & :%bg- Therefore, [3 is well-defined. Now, let
E ],[bg]eX/ [Jand r €R | then

A([a ][ J)={ﬂ(x) gh
z{qphx [x ea, +a; where a, =7, ,a ,a) =7,,b, for some h>f ,g}
=g, (a, +a;) where a, =7, a ,a =7,b, =g a, +¢a
= O 7T 1 +(/7h7Tghbg =@ a T 40, zﬂ([af ])+'B(|:bg ])

X eay +ah whereah =7 K& ,ah =z bg for some h >f ,g}

and

B(rela])=5(ma ])=a (a )=rq (a )=r([a]).
Therefore, ﬂis a homomorphism and ,Haf =@; . Now, let L is the set of all

equivalence classes. We show that L [1U ~"M . First, we prove that for every

— m
f eU and X eM,, [Xf]—{xf}.Let X = o ran eM,,
1t
Y, = ﬂlm o eMjand X, Y . Then there exists g ,f <h €U such that
91 ----- dn
I, (X, )=, (X ). ie, there is H,K,H',K'€D, (R), ..., 7, €[] and

Viseeur 7t €L such that

[h..h, ] en[f, ..f, ] nK[g,..0,] .

[he..hp] eH[fe. £, and 10, [(falm J:( Hlm__, )

e h{l,...,hr{n)
[hikhi] ek[gfK gl and 11 " |- K (®)
n 1 n hg (glﬂl,K,gﬁgn) (|’117j' ,...,hghj
and
H'|m K'In

o o) i )"
(hll ..... hnlj (h{l,...,hr{)

Without loss of generality it can be assumed for 1<i<n, Vi = }/i'. Because of relations
(7) and (9) we have
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n-1
'm-|K'|nm(Z R hfﬂJM ,
j=1
and because of (7) and (8) we obtain

|ihlh'__hr]7n ]T eH'I:flal...fn"‘n :'T mK’[gfl...gf" :'T .

Xp=r— T o 1Y,

(1) ool

S0 [Xf ]: {Xf }.Let @:U™"M —L with UEH[T—:l It is clear that¢ is one to

Therefore,

m m _
one.lf r e Aand —,— €U "M thenforw €U and H,KeDn(R) we have:
u v

n _|Hlm+|K|n
u v o ow '

w' eHu' nKv' and

Hence

¢(%+3):¢[IHImVV+IKan {IHIm+IKI } {IHI LKl }
[ (S G0
LI T-()

Therefore, ¢ is a homomorphism. Clearly, ¢ is onto. [

k %
4. THE FUNDAMENTAL RELATIONS  , & AND DIRECT SYSTEMS

*
Let M be a hypermodule over a hyperring R . The relation ¥ is the smallest equivalence

%
relation on R such that the quotient R is a ring. The relation 7 is called the fundamental
*
e
equivalence relation on R and RT is called the fundamental ring,see [22]. The fundamental
Y

relation & on M over R s the smallest equivalence relation such that M /e isa

RT [23]. Denote v the set of all expressions consisting of finite

4

module over the ring
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hyperoperations of either on R and M or the external hyperoperation applied on finite set of

R and M . The relation & can be defined on M whose transitive closure is the
fundamental relation

%k
& . Therelation & is as follow:
xey < {x,y}cu forsomeuev.

Suppose that ¥ (I’ ) is the equivalence class containingl € R and & (X ) is the

%
equivalence class containing X € M .on M /&" the sum @ and the product | using the

}/* classesin R , are defined as follow:
g*(x )@g*(y ):5*(C ), forall c ee*(x )+g*(y ),
y*(r )0 g*(x ):g* (d ), forall d e}/*(r ).e*(y )-
Now, we will prove one proposition concerning the fundamental relations ]/* and 5*. Let
8: be the fundamental equivalence relation on U "M and Vv, is the set of all expression

consisting of finite hyperoperations of either on R andU "M or of external hyperoperation.

Inthiscase U "M /& isab R / 7" -module.

Proposition 4.1.There isan R / 7 -homomorphismf : M / &" —U "M / &.

Proof. We define f (g* (m )) = g:; (mj First we prove that T is well-defined. Suppose that
1
(g (ml )):(g (m2 )) So, m;e m,.me m, if and only if there exist
Xqoooo X gyl evwith  xg =mpand X o =m,such that{xj Xj+1} SU,
i =1,...,M which implies that {X—'M} C v, . Therefore, we have ﬂg* m2 and so
1 1 u 1 u1
u

f (" ()@ (b))=f (¢"(c))=< (), forall ces™(a)+e"(b),

@)@ ()= ()0 (3= () oran Tes(5ha ()

S
By setting d=cea+band u=1, we obtain

f (g* (a ) P (b )) =f (5* (a ) ®e (b )) In addition, we have

Py (ﬂj - (%) . Thus, f s well-defined. Moreover, f isa homomaorphism because
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f (" (r)0 & (m))=f (" (m ))zg*(%j forall aem,

7 (r)of (£5(m))=r"(r )Og:(?)zgj (bﬂ forall bem.

Therefore, we obtain f (y*(r )[] e¥ (m )) = y*(r )(}f (g*(m )) . Therefore, f isa
homomorphism of modules. [J

Proposition 4.2. Let(Mf ,Hfg )be a direct system of hypermodules over a hyperring R

indexed by a direct set | .Then(M i /gf " ,Hfg
f

)is a direct system of modules over the ring

R/y", whereform € M ,(flal fO’”)EUf ,

Proof. (Mi / gf* M 'Hfg ]is a family of R / 7" -modules and R / 7" -homomorphisms. It
f

is clear that IT; , is the identity forall f €1 . Now, for f <g <h, we have
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( )* m . . m
TynTs g ngf ca =T p ng' @ o
1 n 1 " n
* m
=& | T
K 2 an
(]

.| & T m
—’*gh g™ fg
g (1121 _”fnan)
2 A m
gh’“fyg fM' (flalv_. fnan) .
Therefore ( n Tt g ) ghﬂ'f*g .ad

Proposition 4.3. Let[m,(fl"‘l )J [n,(glﬂl, _‘gfn )JEX/ 0 ,form,neM,
(ff‘l,...,f “n)euf , ( ,,,,, )eU @, el and  B,....[ el as

described in Proposition 3.4, we deflne
a1 an A Pn
[m,(f1 R )]e[n,(gl 4 )}

if there existsh >f ,Qsuch that, . -

Then@ = ¢,

Proof. The proof is similar to the proof of Proposition 3.2 in [12]. [J

Proposition 4.4. Let (I\/If ,Hfg)be a direct system of hypermodules over a Krasner

s
hypermodule R indexed by a direct setl , and lete be the fundamental relation of
lim_ M; .Then
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Um('\/'f It )EW (ligM: )&

Proof. The proof is similar to the proof of Theorem 3.3 in [12]. [J
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