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ABSTRACT 

 

Let (H, ) be a hypergroup and * be the fundamental relation on H, that is, the smallest equivalence relation 

on H such that the quotient (H/*, ) is a group. The purpose of this paper is to compute the fundamental 

group of a given finite hypergroup. In this regards, first obtain some algebraic results to obtain equivalence 

classes of the fundamental relation and the we introduce an algorithm to compute these classes. Also, based on 

these algorithms we develop an application to construct the equivalence classes of * and hence to compute 

the fundamental group, (H/*, ). Furthermore, we use a sub-program to produce all hypergroups (up to 

isomorphism) of order less than or equal 3 and obtain their fundamental groups. Finally, we examine the 

algorithm and program by some examples to compute the fundamental groups of hypergroups of various 

orders. 
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1. INTRODUCTION  

 

The theory of algebraic hyperstructures was born in 1934, when the notion of a hypergroup 

was defined by Marty [12], as a generalization of group. After that, several papers have been 

written (for example see [2], [5], [13], [15], [16], [17]) in order to construction of finite 

hypergroups. Since hypergroups are much more varied than groups, e.g. for the prime number 3, 

there is only one group, up to isomorphism, with cardinality 3, while there are 3999 non-

isomorphic hypergroups with 3 elements. As it is well-known one of the main topics in study of 

hypergroup theory is the fundamental relation *, in fact this relation plays an important role in 

this theory. The aim of this paper is to find an application to compute the fundamental group of an 

arbitrary finite hypergroup. For this, we obtain two algorithms and then develop an application to 

compute the equivalence classes of * and the fundamental group, (H/*, ). Also, we illustrate 

these algorithms by some various examples. 

This paper has been written in 3 sections. In section 2, we obtain some results and give two 

algorithms (Algorithms 2.5 and 2.7) to compute the equivalence classes of * and the 

fundamental group, (H/*, ). In section 3, we develop a comprehensive program in Java 
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programming environment to obtain the fundamental group of a given finite hypergroup as well 

as to produce all finite hypergroups of order less than or equal 3 with their fundamental groups. In 

the sequel of this section we briefly give some notions and results of hypergroup theory that we 

need to develop our paper (for more details see [3], [4]). 

Let H be a non- empty set and P*(H) denotes the set of all non-empty subsets of H. A 

hyperoperation on H is a map  : H  HP*(H). A couple (H , ) is said to be a hypergroupoid. 

Let A, B be subsets of H. The hyperproduct A  B is defined as 
 

 
 

Also if there is no confusion, {a}, A  {a} fag and {a}  A are denoted by a, A  a and a  A, 

respectively. From now on, when there is no ambiguity, we write ab instead of a  b for a, b  H. 

A hypergroupoid (H, ) is said to be a semihypergroup if  is associative. A hypergroupoid (H, ) 

is called quasihypergroup if for all x  H, we have xH =Hx= H (reproductivity). We say that a 

hypergroupoid (H, ) is a hypergroup if (H, ) verifies both associativity and reproductivity. Let 

(H, ) is a finite hypergroup. We define the relation  = n1 n, in which 1 = {(a, a) |a  H} 

and for all (a, b)  H2, ab iff {a, b}  mi=1 i, for some z1, z2, … , zm  H and m  . Indeed, 

for all a, b  H, we have ab iff z1 = a z2 … zn-1 zm = b, for some z1, z2, … zm  Hn. The 

relation  was introduced in 1970 by Koskas [11] and was mainly studied by Corsini [4] and 

Vougiouklis [18] and others. A usefull tool in the study of theory of hyperstractures is the relation 

*, which is defined in a hypergroup or semi-hypergroup (H, ), as the smallest equivalence 

relation on H such that the quotient H/* be a group (semi-group) under the hyperoperation *(a) 

 *(b) =  *(c) , c  a  b. This relation named as fundamental relation and (H/*,  ) is called 

fundamental group. It is seen that, in hypergroups, * = ^ , in which ^ is the transitive closure 

of . In [10], Freni proved that  is transitive on hypergroups. Therefore, * = ^. In [1], Ameri 

introduced a process to obtain a group via the fundamental relation. The equivalence relation 

*(or its extended forms in hyperrings and hypermodoules and hyperlagebras) also was studied 

in many other papers( for example see [3], [6], [7], [8], [9], and also [14], [17], [18]). 
 

Definition 1.1 Let (H, ) be a hypergroup and a  b = H, for all a, b  H. Then (H, ) is called a 

total hypergroup. It is seen that in this case for every x, y  H, we have xy. So x*y and thus 

*(x) = *(y). Hence H/* is a singleton. 
 

Definition 1.2 A Hypergroup (H, ) is very thin if all its hyperoperations are operation except 

only one. 

Let (H, ) be a very thin hypergroup. Hence for a unique (a , b)  H2, we have |a  b|  2. Set 

|a  b| = A. So for all x  A,  *(x) = A. It is clear that if |A| = m, then |H/*| = n – m. 
 

Definition 1.3 Let(H1, ) and (H2, ) be two hypergroups. A map f : H1  H2 is called: 
 

(1) a homomorphism if f(x  y)  f(x)  f(y); for all x, y  H1. 

(2) a good homomorphism if f(x  y) = f(x)  f(y); for all x, y  H1. 

(3) an isomorphism if it is a one to one and onto good homomorphism. If f is an isomorphism, 

then H1 and H2 are said to be isomorphic. 

 

2. COMPUTATION OF  * EQUIVALENCE CLASSES AND FUNDAMENTAL GROUP 

 

In the sequel we assume that (H, ) is a finite hypergroup of order n. Clearly, 
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In H, the basic point on computation of equivalence classes of relation  is the existence of a 

least upper bound (or an upper bound ) m  N such that for all a, b  H, we have b   (a) iff (a, 

b)  m
i=1 i. Let Pm = { m i=1 ai |ai  H}. We start with the following lemma. 

 

Lemma 2.1 Let (H, ) be a hypergroup of order n and Pm  m-1 i=2 Pi, for some m  3 (m   N) . 

Then for all k > m, we have Pk  m-1 i=2 Pi . 

Proof. Let c  Pm+1. So we have: 
 

c = (a1  a2  …  am)  am+1 , for some a1, a2 , … , am, am+1. 
 

Suppose b = a1  a2  … am, then 
 

 
 

Since Pm  m-1 i=2 Pi, it follows that c  m-1 i=2 Pi. Therefore, Pm+1 
m-1 i=2 Pi. So the 

assertion holds for k = m + 1. Similarly it is true for k > m, by induction.  
 

Corollary 2.2 Let (H, ) be a hypergroup such that |H| = n and for some m  3(m 2 N) we have 

Pm m-1 i=2 Pi . Then for all a, b  H and a  b, we have b   (a) iff(a, b)m-1 i=2 i 
 

Proof. Let a, b H. So b   (a) iff { a, b}  Pk, for some k  N. If 2  k  m – 1, then it is clear 

that Pk  m-1
 i=2 Pi. Now if k  m, Lemma 2.1 results Pk  m-1

 i=2 Pi. So {a, b}  Pk  m-1
 i=2 Pi, 

that is, (a, b)  m-1
 i=2 i. 

 

Proposition 2.3 Let (H, ) be a hypergroup, such that |H| = n. Then there exists j, 2  j < 2n such 

that Pk  j
i=2 Pi for all k. 

 

Proof. Since |P*(H)| = 2n - 1, Then 2n-1 i=2 Pi is an upper bound for the sequence P2  P2  P3  

…  2n-1
 i=2 Pi  … , that is, for all k  2, we have Pk  k

 i=2 Pi  2n-1 
i=2 Pi. This complete 

the proof.  

The next result is an immediate consequence of Corollary 2.2 and Proposition 2.3. 
 

Theorem 2.4 Let (H, ) be a hypergroup, in which |H| = n. For all a, b  H(a  b), we have b   

(a) iff (a, b)  j
 i=2 i, for some 2  j < 2n. 

 

Algorithm 2.5 Next, we come to the construction the algorithm, which computes - equivalence 

classes, according to the following description: 

Step 1: 
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If P3  P2, then by Lemma 2.1 the routine finishes. Otherwise, by Proposition 2.3, we 

have Pj  j-1i=2 Pi for some j  4. Hence we move to the next step. 

Step 2: 

Let B = {(i1), _(i2), … ,  (ik)} be the output of Step 1. We set: 
 

 
 

  
 

And we continue as bellow: 
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At the end of the process we obtain -equivalence classes. Now in order to obtain the 

Fundamental group, (H=/*, ), we have the following theorem: 
 

Theorem 2.6 Let (H, ) be a hypergroup, such that |H| = n and k  N be the number of all -

equivalence classes. Let  be the operation on H/* and (j)   (h) = (t) , for some t  j  h  

(j)  (h). If we rewrite the set of - equivalence classes, as the following: 
 

 
 

then we have (t) =  (il) ,  (il)  j  h  , for one and only one  (il)  B. 

Proof. In group (B, ) for one and only one t0  {i1, i2, … , ik} we have: 
 

 
 

Since t  (t) is an arbitrary member of j  h, so we have j  h  (t)  . Thus j  h  (t0) 

  . Now it is sufficient to set il = t0 and this complete the proof. 
 

Algorithm 2.7 Let B = {(i1) , (i2) , (i3) , … , (ik)} be the set of all -equivalence classes 

obtained through Algorithm 2.5. We present an algorithm, in brief, for computation of 

fundamental group, as follows: 
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3. JAVA PACKAGE AND EXAMPLES 

 

In this section we use a comprehensive program written totally in Java to compute the 

fundamental group of a given finite hypergroup. This program also produces all hypergroups of 

order n  3 (n  N) . It consists of two sub-programs (Hypergroupgenerator and Main). For 

summarizing, those part of program that are devoted to data entry and output, memory allocation 

and file management, are deleted. In the following, the Hypergroup-generator, counts all 

hypergroups of order n  3 (n  N) and isomorphism classes of them. This sub-program also 

enumerates quasihypergroups of order n and all -equivalence classes. 
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The following example illustrates the output of sub-program, Hypergroup-generator, after 

enumeration of hypergroups of order 3: 
 

Example 1. If set n = 3 in the above sub-program, It results there are 79 hyperstructures. Then we 

find 10323979 quasihypergroups, 23192 hypergroups and 3999 hypergroups(up to of 

isomorphism) of order n = 3, distributed on 5 classes of cardinality. Moreover, the fundamental 

groups of these hypergroups are as follows: 

One group is isomorph to Z3, 9 of them are isomorph to Z2 and the rest are trivial groups (0). 

In the following we examine for (H, ) given in Table 1. 

 

Table 1. Hypergroup (Example 1) 
 

  
 

Equivalence Classes 

(1) = {1},  (2) = {2, 3}  
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That is, (H/*, ) = Z2: 

Now by the next sub-program (Main), first it is checked that is an arbitrary hypergroupoid 

(H, ) of order n  N a hypergroup or not. If it is a hypergroup, this subprogram computes its -

equivalence classes and fundamental group. This can be done by the following written lines: 
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Here, we observe some examples of hypergroups, used by sub-program, Main, and the 

outputs: 
 

Example 2. Consider hypergroupoids (H1, ) and (H2, ) as in Table 2: 

 

Table 2. Hyperstructures (Example 2) 
 

  
                        Hyperstructure (H1, )                                   Hyperstructure (H2, ) 

 

For these two hyperstructures, we get the following outputs: 

(H1, ) is a hypergroup, with the following equivalence classes 
 

(1) = {1},  (2) = {2, 3} 
 

Hence (H1/* , ) =Z2, while (H2, ) is not a hypergroup and actually is a quasihypergroup. 
 

Example 3. Consider two hyperstructures of order 4 as follows 
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Table 3. Hyperstructures (Example 3) 
 

 
                        Hyperstructure (H1, )                                   Hyperstructure (H2, ) 

 

For hyperstructure (H1, ), it concludes that (H1, ) is a hypergroup, with the following 

equivalence classes 
 

(1) = {1, 2}, (2) = {3, 4} 
 

Hence (H1/*, ) =Z2. For hyperstructure (H2, ) we get the following output: 
 

Hypergroup 

Equivalence Classes 
 

 
 

That is, (H2/*, ) =Z3. 
 

Example 4. Give two hyperstructures of order 5 as follows: 

 

Table 4. Hyperstructure (H1, ) (Example 4) 
 

  
 

Table 5. Hyperstructure (H2, ) (Example 4) 
 

  
 

Then for hyperstructure (H1, ), it results: 
 

Hypergroup 

Equivalence Classes 
 

(1) = {1},  (2) = {2, 3},  (4) = {4},  (5) = {5} 
 

Therefore, (H1/*, ) = Z4 (see Table 6). 
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Table 6. Operations (Example 4) 
 

  
 

For hyperstructure (H2, ) we get the following output: 
 

Hypergroupoid 
 

Example 5. Consider hyperstructure (H, ) of order 6 as follows: 

 

Table 7. Hyperstructure (H, ) (Example 5) 
 

  
 

And we get the following output: 
 

Hypergroup 

Equivalence Classes 
 

(1) = {1, 2, 3},  (4) = {4}, (5) = {5},  (6) = {6} 

 

Table 8. Operations (Example 5) 
 

 
 

It is seen that (H=/*, ) is isomorph to Klein quartet group, that is, (H=/*, ) = Z2  Z2 

(see Table 8). 
 

Example 6. Consider hyperstructure (H, ) of order 7 (as shown in Table 9). 
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Table 9. Hyperstructure (H, ) (Example 6) 
 

  
 

And we get the following output: 
 

HyperGroup 

Equivalence Classes 
 

(1) = {1},  (2) = {2},  (3) = {3} 
 

 (4) = {4},  (5) = {5},  (6) = {7, 6} 

 

Table 10. Operations (Example 6) 
 

  
 

Which |(2)| = 2, | (6)| = 3, …. Hence the fundamental group (H/*,  ) is isomorph to S3. 
 

Example 7. Give hyperstructure (H, ) of order 8 as it shown in Table 11. 

 

Table 11. Hyperstructure (H, ) (Example 7) 
 

  
 

Then for hyperstructure (H, ), it results: 
 

Hypergroup 

Equivalence Classes 
 

(1) = {1, 5}, (2) = {2, 6}, (3) = {3, 7}, (4) = {4, 8} 
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Table 12. Operations (Example 7) 
 

  
 

As in example 5, here we also have (H/*, ) is isomorph to Klein quartet group and (H/*, 

) = Z2  Z2 (see Table 12). 
 

Example 8. We give a hyperstructure (H, ) of order 9 as follows: 

 

Table 13. Hyperstructure (H, ) (Example 8) 
 

 
 

And we get the following output: 
 

HyperGroup 

Equivalence Classes 
 

(1) = H 
 

Trivial case, that is, (H=/*, ) = (0). 

 

4. CONCLUSION 

 

We gave two algorithms to compute the fundamental group of a given finite hypergroup. One 

of this algorithm produces all hypergroups of order less than or equal 3 and another algorithm 

first check that a given hyperstructure is a hypergroup or no and the compute the fundamental 

group derived from a hypergroup via the fundamental relation. 
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