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ABSTRACT 

 

We present to obtain the equations of motion of the axially composite beams. The composite beams are 

produced from two or more different materials. In this study, the material varies along the beam axis. In other 

words, it is seen that the beam is made of different materials, as the beam proceeds along its axis. The material 

is homogeneous and the beam is formed by combining the step by step along the beam axis. The mathematical 

model of this problem can be presented in two different ways. In the first, a multispan beam approach is used. 

In this approach, the variation of each material is given as one span. The equation of motion is obtained as 

number of various material and four different transient conditions are written for each material alteration 

point. In the other, one equation is introduced. This equation contains the discontinuity function. The material 

variation is modeled with the discontinuity functions. Thus, two different models are obtained for only 

problem. 

Keywords: Composite beam, discontinuity function, Euler-Bernoulli beam theory. 

 

 

1. KINEMATICS OF EULER-BERNOULLI BEAM THEORY (EBT) 

 

In this section, the model to be used as the application problem is considered and the 

equations of motion are derived using Green Lagrange tensor. The displacements  ˆnu   and ˆ nw  in 

horizontal and vertical direction in a beam occur according to Euler-Bernolli beam theory. It is 

assumed that the beam performs the deformation in the efficiency of only simple bending and the 

influence of shearing force is ignored when these displacements are written. In this case, the 

deformations in the direction 1x̂  and 3x̂  are obtained by substituting ˆnu  and ˆ nw  into the three-

dimensional Green-Lagrange deformation relation. 

From the geometry of the kinematics of Euler-Bernoulli beams [1], the transverse 

displacements are obtained as follows: 
 

   
ˆ

ˆ ˆ ˆ ˆ ˆ
ˆ

n
1 1 n 1 3

1

w
u x ,t = u x ,t x

x





;  2
ˆ ˆ =01u x ,t ;    ˆ ˆ ˆ ˆ

3 1 n 1
u x ,t = w x ,t               (1) 
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The Lagrangian fini te product tensor  L  is given by [2] 
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  (2) 
 

These statements are shown as symmetrical tensor components under the name of the unit 

Green-Lagrange strain tensor. Besides, the Einstein summation is given as 
 

1 1
, 1,2,3

2 2

ji k k
ij

j i i j

uu u u
ε = + + k

x x x x

     
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                                          (3) 

 

From the Eq. (3), , ,11 22 33ε ε ε  and , ,12 13 23ε ε ε  represent the extension ratios and angles 

of shear, respectively. On the other hand, the derivatives in the following should be firstly 

calculated  
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3
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u
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Substituting the expressions (4) into the unit Green-Lagrange strain tensor yields 
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                                                            (5.a) 
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Substituting the unit Green-Lagrange strain deformations into the unit Von-Karman strain 

form, one obtains 
 

     0 1 20 1 2

11 3 11 3 11 3 11x x x       ; 
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and 
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(0)

13
0  , 

(1)

13
0  , 

(0)

33
0  , 

(1)

33
0                                                              (7.b) 

 

Then, the relations in the following are found 
 

2

3

ˆ ˆ ˆ1
ˆ

ˆ ˆ ˆ2

2

n n n
11 2

1 1 1

u u w
ε = + x

x x x

     
   

     
; 13 0  ;   

(0)

33 33= 0                         (8) 

 

The model of Euler Bernoulli beam can be obtained by considering the unit deformations. On 

the other hand, the extended Hamilton’s principle is used to obtain the equations of motion. The 

extended Hamilton’s principle is given as 
 

1

2

t

t

( δK +δU +δV)dt = 0                                                                                    (9) 

 

where K , U  and V  denotes the variation of kinetic energy, the variation of potential 

energy and the variation of the virtual work performed by loads, respectively. On the other hand, 

we assume that the cross-sectional area 
n

A  and the density of the beam material 
n

   are 

constant for each span. Then,  
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

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where N  is the the number of the span. Thus, the variation of potential energy can be 

written as 
 

1

ˆ
n
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xN
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
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where 11 n 11σ E ε . The equation of the virtual work performed by the external loads is 

given as 
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n
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where P̂  represents the dimensional axial load, f̂  and q̂  are the distributed loads in 

horizontal and vertical directions, respectively. Considering the Eqs. (10) and (11) in detail, then 
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Applying integration by parts to the Eqs. (12)-(13), the coefficients of ˆ
n

u  and ˆ
n

w  

introduce the equations of motion. Besides, the applications of boundary values appeared during 

integration by parts reveal the boundary conditions. Applying the extended Hamilton’s principle 

to these equations, the equations of motion are obtained as 
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and the boundary conditions 
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such that  
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where nI , 1,2,n   represents the moment of inertia for each span. However, the cross 

section and moment of inertia depend on the displacement of the beam. Here, it is assumed that 

the beam is compose of homogeneous, isotropic and elastic material. Then, the relation in the 

following is found 
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Substituting 
(0) (1) (2)

, ,m m m  and 
(0) (1)

11 11
,M M  into the Eqs. (15)-(16), the equations of 

motion are obtained as 
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 1,2,n  . Since the transverse displacement is equal to zero and there is not the 

transverse distributed load, the relation in the following can be written as 
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Substituting this relations to Eq. (21.a) yields  
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Integrating both sides of the equality, one obtains 
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The Eq. (24) shows that the Eq. (21.a) does not depend on space. Integrating both sides of the 

Eq. (24) on domain for span N , the resulting equation is 
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Substituting the Eq. (25) to the Eq. (21.b), the equation of motion with transverse vibrations is 

obtained as [4] 
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Depending on the various situations appeared on the structures, the discontinuities of the 

structure elements are encountered. For example, the structures such as cracks in a beam, supports 

placed at certain intervals along the beam, singular forces on the beam or intermittently placed 

concentrated masses lead to discontinuities in the beam element. For each case which causes the 

discontinuity, the transient conditions are handled one by one in the following. 

 

2. THE TRANSIENT CONDITIONS FOR THE BEAMS HAVING THE DIFFERENT 

TYPE DISCONTINUITIES 

 

2.1. The number N  of Simply Supported Beam 

 

In this section, the beam with the number N  of simply support is considered. For example, 

the beams placed on a column in a building are modelled in this way. 
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Figure 1. Simply supported multispan nonlinear beam 

 

Transient conditions 
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2.2. The Beam Supported with the number N  of Spring 

 

 
Figure 2. The multispan nonlinear beam supported with spring 
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2.3. The Beam with the number N  of Crack 
 

 
Figure 3. The multispan nonlinear beam with cracks 
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2.4. The Beam with the number N  of concentrated mass 
 

 
Figure 4. The multispan nonlinear beam with concentrated mass 

 

 

Transient conditions 
 

           

   

   

1

1 1 1

2

1

1 1

2

1 1 1

1 1 1 1 1 1 1

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ

ˆ2

ˆˆ ˆ
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ

ˆ2

, ,

n

n

n

xN

n n n

n x

n n n

x

w x w x w x w x w x w x

E A w
E I w x w x P dx

L x

E A w
E I w x w x P dx

L x

           

     

     



  



  

     

     


  




  



  
   

   

 
  

 

 

 
1

1

ˆ ˆ 0
nxN

n

M w x
 




 
 
 
  

 

 

( M  represents a mass on the beam) 
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2.5. The Stepped Beam  
 

 
Figure 5. The multispan nonlinear stepped beam 
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3. THE MATHEMATICAL MODEL WITH DISCONTINUITY FUNCTION  

 

The nonlinear mathematical model for multispan beams is considered, so far [12]. Thus, the 

transient conditions except for the boundary conditions are given for each discontinuity point 

observed during solution. Then, the problem can be modelled by one equation including 

discontinuity function instead of a set of equations. The governing equation is obtained as 
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with similar processes where  ˆ ˆk x  represents the general spring constant. For 

practicability, the variable x  in stead of 1x̂  in the Eq. (27) is considered. Now, we consider the 

variation of the beams having the different discontinuities in the Section 2 such that the 

mathematical model have the discontinuity function.    

 

3.1. Simply Supported Beam 

 

The spring constant k̂  in the Eq. (27) vanishes if the beam has two simply supports. Besides, 

the boundary conditions are 
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3.2. The Beam Supported with the number N  of Spring 

 

The spring constant k̂  in the Eq. (27) becomes 
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where   is defined as the Dirac delta function.  

 

3.3. The Beam with the number N  of Crack 

 

For the cracked beam, the cross-sectional area ˆ( )A x  and moment of inertia ˆ( )I x  become  
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where 1ia   and 1ib   changes as depending on the depth of crack. 

 

 3.4. The Beam with the number N  of concentrated mass 

 

The coefficient of A  becomes 
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where m  denotes the mass of cross sectional area and iM  is each mass on the beam. 

 

3.5. The Stepped Beam 

 

For stepped beam, the coefficients in the Eq. (27) is  
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where function H  corresponds to the Heaviside step function ( ia  describes ratio of cross-
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sectional area in .i step to initial cross-sectional area. ib  represents ratio of moment of inertia in 

.i  step to initial moment of inertia. 

 

4. CONCLUSIONS 

 

In this study, the derivation of equation for the axially composite beams is introduced. The 

composite beams occur different materials. We present two different model to observe the 

variation of material in the beam. Firstly, we give the nonlinear mathematical model as multispan 

beams. For this kind of equations, the transient conditions except for the boundary conditions 

must be written for each discontinuity point observed during solution. On the other hand, one 

equation having the discontinuity function is proposed for the different type of discontinuities in 

the beam. In the first model, it becomes increasingly difficult to make a solution since the number 

of the written equation and the transient conditions rise as the number of discontinuous point 

increases. The analytical or semi-analytical solution can be obtained for a small number of 

discontinuous points. Therefore, second mathematical model is more favourable to overcome 

these difficulties encountered in solution.  
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