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ABSTRACT

This paper acquires the closed form solutions for the Kudryashov-Sinelshchikov (KS) equation. The Riccati-
Bernoulli (RB) sub-ODE method is used to acquire such solitons whose structure include trigonmetric,
hyperbolic and algebraic structures. Some interesting figures for the obtained solutions are presented in order
to shed light on the characteristics of the solutions.
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1. INTRODUCTION

Soliton solutions to NPDEs play an important role in mathematical physics. Recently, many
powerful methods for acquiring soliton and other solutions to NPDEs have been proposed [1-19].
In this study, we analyze and investigate the soliton solutions for the KS equation given by

Up + YUUy + Uspx — S(uuxx)x - ﬁuxuxx — VlUyx — 5(uux)x =0, (1)

where y, €, B, v, & are real parameters. Eq. (1) characterizes the pressure waves in the liquid
with gas bubbles taking into account the heat transfer and viscosity [12-14] and it is called KS
equation. If e = k = 0, Eq. (1) becomes Burgers-KdV [15-17].

2. DESCRIPTION OF RB SUB-ODE METHOD

Let there be given a NLPDE, say, in two variables,

F(rme o T Tes -2 ) = 0, )
where F is a polynomial function in r(x, t). The main step of this method is as follows:

Step 1. We consider its traveling wave solution

r(x,t) = 1), ©)]

E=x+Vt, 4)
where () travel s with speed V. Then equation (2) is reduced to an ODE:
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H(r,r',r'",r"",...) =0, (5)
where H is a polyno mial in () and its total derivatives.

Step 2. Let Eq. (5) has the following solution

' =ar?S + br + crS, (6)
where a, b, ¢, and s are constants to be determined later. From Eq.(6), we acquire

=ab(3 —s)r?S +a?(2 — s)r3¥-2s 4+ sc?r2s-1t

+bc(s + Drs + (2ac + b, @
" =ab(2—-s)3 =) +a?(2 —5)(3 — 2s)r¥"2
+s(2s — 1)c?r?572 + bes(s + Dr5~1 + 2ac + bH)r'. (C)]

Remark Eq.(6) is a Riccati equation for ac # 0 and s = 0. Eq.(6) is a Bernoulli equation a # 0,
¢ =0, and s # 1. Therefore, this equation is called Riccatti-Bernoulli equation.

The types of the solutions for Eq. (6):
1. For s = 1, we acquire

r(§) = Celarb+eX, ©)
2.Fors #1,b =0,and c = 0, we acquire

r(§) = (a(s — 1§ + O))s. (10)
3.Fors #1,b # 0,and ¢ = 0, we acquire

r(§) = (— %+ CebeDHT, (11)

4. Fors #1,a # 0, and b% — 4ac < 0, we acquire

r({) _ (_2% + \/4¢7L2ca—b2 tan((l—s)\/:ac—bZ

and

€+0n)”, 12)

r(©) = (- & - LR or (2 4 ) 13)

5.Fors # 1,a # 0, and b? — 4ac > 0, we acquire

b b?—4 1-s)Vb%—4
T(f)=(—;— Zaac h(( s) ac

and

@+c») (19)

r(§) = (=2 — P (LR (¢ oy, (15)

6.Fors # 1,a # 0, and b? — 4ac = 0, we acquire
1 b=
) = Gomnero T2 (16)
here C is an arbitrary constant.
2.1. Biacklund Transformation of the RB Equation

If r,_1 (&) and 1, (&) = 1, (11 (&)) are the solutions of Eq. (6), we have
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drgéf) _ ‘“;‘f’ drn;(f) 17
;irr:_(f) (arfzs + bry_q + cri_y),
nam ely
dra® A ® (18)

arZ~S+brptery  arZi+bry_gters )

Integrating equation (17) once with respect to &, we acquire

1

_ —CA1+aA;(rn_1(§)*5 1-s
() = (bAl+aA2+aA1(rn_1(§))1‘5)) ’ (19)

here A, and A, are arbitrary constants.
3. IMPLEMENTATION OF THE METHOD

We transform Eq. (1) to the ODE below:

—Vu(®) + %u(f)z +u"(§) —eu(@u') - ;u'(f)z —vu(§) —ou(Hu'§) = 0. (20)
If we replace Eqgs. (6) and (7) in Eqg. (20), then we get
—6abu(¢)? + 2absu(§)? + 2avu(é)? + 2abpu(&)® + 2adu(§)3 + 6absu ()3 (21)

—2abscu(§)® — 4a?u(8)37% + 2a?su(8)3° + a?pu(é)*5 + 4asu(&)*
—2a?seu(&)*5 — 2bcu(§)? — 2bcsu(§)? + 2cvu(§)? + c2pu(é)3
+2c%seu()3S — 2b2u(é)MS — 4acu(&)S + 2bvu(E)MS + 2Vu (&) + b2pu(§)?*s

+ 2acBu(§)?+S —yu(§)?+S + 2bsu(&)?+s + 2b2%su(§)?*s
+ 4acsu(&)?TS + 2bcfu(E)TT? + 2cou(E)1T?S + 2bceu(§)11?
+ 2bcseu (&)1 — 2c2su(§)~13s = 0,

setting s = 0 in Eq. (21), we obtain
—2bc + 2B + 2cv — 2b%u(§) — 4acu(&) + 2bcfu(€) + 2bvu(é) + 2Vu(€) + 2céu(é) +

2bcsu(§) — 6abu(§)? + b2pu(é)? + 2acfu(é)? + 2avu(é)? — yu(&)? + 2bdu(é)? +
2b%2cu(8)? + daceu(é)? — 4au(é)® + 2abpu(é)® + 2adu(é)? + 6abeu(é)® + a?pu(é)* +

4a’su(§)* =0, (22)
setting each u!(i = 0,1,2,3,4) to zero in Eq. (22), we have

c(=2b+cf+2v)=0, (23)

2(=b?>=2ac+n+cS+bw+c(B+¢)) =0, (24)

(—y + 2b8 + b2(B + 2¢) + 2a(—3b + cf + v + 2c€)) =0, (25)

2a(—2a+ &+ b(B + 3¢)) = 0, (26)

a?(B +4¢)=0. 27

Solving Egs. (23)-(27) using Mathematica 9, we get
B =—4e,a= %(28 —2ve + /16ye + (=28 + 2ve)2), b =

which produces the foIIowing soliton solutions

2av-y

,c=0,n=b(b—-v),

w (6, t) = (——+ Ce™ e )1, (28)
up(,t) = 2L+ L2 an (=2 (6 4+ 0)), (29)
and
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s ) = Z0 + S ot (4 0)) (30)

w(x,6) = =+ S coth (2 (6 +0)), (31)
and

us(o ) = Zt + B anh (52 + 0)) @

ug(x,t) = (— a(§'1+c) +2av +y), -
=

Figure 1. (a) Numerical simulation of Eq. (32) whenv =2,y =13,§ =3, = 1.
(b)Numerical simulation of Eq. (31) whenv =5,y = 13,6 =13, e = 1.
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u(x,t)

Figure 2. (c) Numerical simulation of Eq. (29) whenv =2,y =3,6 =5, = 1.8.
(d) Numerical simulation of Eq. (30) whenv =18,y =13,§ =1, = 2.

4. CONCLUDING REMARK

In this study, we discussed and investigated the new soliton solutions for the KS equation in
mathematical physics. The proposed method gave a new infinite sequence of solutions. These
solutions were expressed by trigonmetric, hyperbolic, algebraic and exponential structures. Some
phyiscal features of the obtained solutions are presented.
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