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ABSTRACT

In this paper, we gave adjustments for some results in the paper [1], and proved three new Katugampola
fractional Hermite-Hadamard type inequalities for convex functions by using the left and the right fractional
integrals independently. One of our Katugampola fractional Hermite-Hadamard type inequalities is better than
given by Chen and Katugampola. Also, we gave two new Katugampola fractional identities for differentiable
functions. By using these identities, we obtained some new trapezoidal type inequalities for convex functions.
Our results generalize earlier results.
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1. INTRODUCTION

Let f:1 ¢ R — R be a convex function defined on the interval I of real numbers and a,b € I
with a < b. The inequality

f(aTH)) B ﬁf;f(x)dx < f(a);rf(b) (1)

is well known in the literature as Hermite-Hadamard’s inequality. (See [3.,4]).

The inequality (1.1) attract widely attention for many researchers, so in recent decades, many
generalizations and extensions of inequalities (1.1) for various classes of functions have been
studied.

One of the most generalization of the inequalities (1.1) is fractional type, for instance
Riemann-Liouville, Hadamard's, conformable, Katugampola fractional integrals etc.

In this work, we focused on Katugampola fractional integrals and Riemann-Liouville
fractional integrals which are the special case of Katugampola fractional integrals. Some
generalizations of Hermite-Hadamard type inequalities in Riemann-Liouville fractional integrals
are widely studied in the papers [8, 9, 10, 14] and references therein. In addition, the
Katugampola fractional generalizations of Hermite-Hadamard type inequalities have been
presented in [1, 13].
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Let see the definitions and some results about Riemann-Liouville and Katugampola fractional
integrals.
Definition 1. Let a,b € Rwith a < b and f € L[a, b]. The left and right Riemann-Liouville
fractional integrals J§. f and J7_f of order « > 0 are defined by
Jaf () = r(a)f (x=)*'f(t)dt, x>a
and

' f(x) = F(a)f (t—x)*1f(t)dt, x<b

respectively, where I'(a) is the Gamma function defined by I'(a) = f0°° ettt 1de, (see [7,
page 69]).

In [14], Sarikaya et al. presented Hermite-Hadamard type inequalities for convex functions in
fractional integral forms as follow.

Theorem 1. Let f:[a,b] » R be a positive function with 0 <a <b and f € L[a,b]. If fisa
convex function on [a, b], then the following inequalities hold:
b I'(a+1) (@)+f )
f(52) < st Ui f (@) + 2, f ()] < L2 (12)
with a > 0.

Remark 1. In Theorem 1, the assumption of the positivity of the function f is not necessary. At
the same time, a, b € R could be any numbers such that a < b.

In [8,9,10], Kunt et al. proved the following three Riemann-Liouville fractional Hermite-
Hadamard type inequalities for convex functions as follows:
Theorem 2. Let f: [a, b] - R be a a convex function for real numbers a < b. If f € L[a, b], then
the following inequalities for the lefht Riemann-Liouville fractional integral hold:

b r 1 b
R < Gesp s ) < L0 =
where a > 0.

Theorem 3. Let f: [a, b] - R be a a convex function for real numbers a < b. If f € L[a, b], then
the following inequalities for the right Riemann-Liouville fractional integral hold:

a+ab M'(a+1) fla)+af(b)
f(a+1) s (b—a)« ]b f( )< a+1 (1.4)
where a > 0.

Theorem 4. Let f: [a, b] — R be a a convex function for real numbers a < b. If f € L[a, b], then
the following inequalities for the Riemann-Liouville fractional integral hold:
HED) (G _ resn @+/®)
G )2 ) o e AV IORNNIOIESS (15)
where a > 0.
The following definitions of Katugampola fractional integrals could be found in [1,6].
Consider the space X? (a,b) (c € R, 1 < p < o) of those complex-valued Lebesgue measurable
functions f on [a, b] for which ||f]|xr< o where the norm is defined by

1] _(f [tEf(£)[P ) <w, (1<p<ow, cER)
and for the case p = o
[Ifllxr = ess supasesplf () (c €R).
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Definition 2. L et [a,b] < R be a finite interval. Then the left and right side Katugampola
fractional integrals of order & > 0 of f € X?(a, b) are defined by
p _ pl—a x tp—1
180 = T Ja Gomgya / (DL,
and
p _ pl—a b tp-1
Iy f(x) = %fx e AOL 2
witha <x < b and p > 0, respectively.
(See [5], for the definition of the set f € X? (a, b))
It is easily seen that if one that p — 1 in the Definition 2, one has the Definition 1.
The following properties of convex functions and lemma are used for forward results.

Definition 3. [12, page 12] A function f defined on I has a support at x, € I if there exists an
affine functions A(x) = f(x,) + m(x — x,) such that A(x) < f(x) for all x € I. The graph of
the support function A is called a line of support for f at x,.

Theorem 5. [12, page 12] A function f: (a,b) — R is a convex function if and only if there is at
least one line of support for f at each x, € (a, b).

In this paper, our aim is to obtain new Katugampola fractional Hermite-Hadamard type
inequalities by using only the right or the left fractional integrals separately for convex functions.

2. SOME CORRECTIONS FOR THE PAPER BY CHEN AND KATUGAMPOLA

In this section, we want to give adjustments for some results in the paper [1].

For the Theorem 2.1 in [1], f must be a convex function on [a”, b”] instead of [a, b], and the
assumption of the positivity of the function f is not necessary. At the same time, a, b € R could
be any numbers. So, the correct theorem should be expressed as follows:

Theorem 6. Let f:[a”, b”] - R be a convex function on [a?, b?] with f € X? (a”, b?), then the
following Hermite-Hadamard type inequality for the Katugampola fractional integrals hold:

f (aP+bP) < p%T(a+1) [p]g+f(bp) + p]g_f(ap)] < f(aP)-;-f(bP) (21)

2 — 2(bP-aP)“

where —co < a < b <o, @ >0, p> 0 and the fractional integrals are considered for the
function f(x”) and evaluated at a and b, respectively.

Remark 2. In Theorem 6

(1) If one takes p — 1, one has the inequality (1.2),
(2) If one takes p — 1, and after that if one takes @ = 1, one has the inequality (1.1).

For the Theorem 2.2 in [1], the correct expression should be expressed as follows:

Theorem 7. Let f:1 € R — R be a differentiable function on I° (the interior of the interval 1),
a®,b? € I’ with a? < bP. If f'is differentiable on I°, then the following inequality holds:
f@)+f®°) pTla+1)
2 " 2(bP —ar)
P — gP)2
< m (0( + 2%) supgefarpeilf (1.
For the Theorem 2.3 in [1], the correct expressions should be expressed as follows:

Theorem 8. Let f:I € R —» R be a differentiable function on I°, a?, b? € I’ with a? < bP. If
| f'| is a convex on [a”, b”], following inequality holds:

[ "I f®P) + PI5_f(@aP)]
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f(aP)+f(bP) “T(a+1)
LD RS IS + P

(b° —a?)?
’ P ’ P

<t @+ 16N

For the Lemma 2.4 in [1], the correct expression should be expressed as follows:
Lemma 1. Let f:I € R - R be a differentiable function on I°, a?, b? € I’ with a? < bP. If the
fractional integrals exist and f' € L[a®,b”], then the following equality for the Katugampola

fractional integrals hols:
f@?)+f(®BP) p*T(a+1)
2 2(bP — ar)*
b” —af

[718 f®P) + PI5_f(aP)]

f [(1— tP)® — tPa]tP=1f"(tPaP + (1 — tP)bP)dt

where @ > 0 and p > 0.
For the Theorem 2.5 in [1], the correct theorem should be expressed as follows:

Theorem 9. Let f:I € R — R be a differentiable function on I°, a?, b? € I’ with a? < bP. If
| f'| is convex on [a”, b”], then the following inequality for the Katugampola fractional integrals
hold:

f@@)+fm*) p*T(a+1) [ PJe.f(bP) + PIE f(aP)]

2 - Z(bﬂ — aP)a
bP — qP)?
(Zp(a—-(ll-l))( : o) [F' @)1+ IF G,

witha > 0and p > 0.

3. KATUGAMPOLA FRACTIONAL HERMITE HADAMARD TYPE INEQUALITIES
FOR CONVEX FUNCTIONS

Theorem 10. Let f: [a?, b”] — R be a convex function on [a?, b?] with f € X (a”, b?), then the

following Hermite-Hadamard type inequality for the left Katugampola fractional integral holds:
aaP+bP PT@+) g o af(aP)+f(bP)

f( a+1 ) = (bP—ar)a lg f(bP) < a+1 (3.1)
where —oo < aP? < bP < o, ¢ >0 and p > 0.

Proof. Let @ > 0.Since f is convex on [a”,b”], using Theorem 5, there is at least one line of

support

AGP) < f (2220) 4 (xp - 2220 < f(xP) (3.2)
for all x? € [a?,b?] and m € [f’f (%),fﬁr (“ap+b )] From (3.2) and convexity of f,

we have

A(tPa? + (1 — t9)bP) = f (“20) 4 m (PP + (1 — 9)bP — 2220) < f(tPar +

(1= ¢tP)bP) < tPf(a?) + (1 — tP)f (bP) (33)

for all t € [0,1]. Multiplying all sides of (3.3) with %~ and integrating over (0,1) respect to
t, we have
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J, tep 1 [f (—“ap“’p) +m (tﬂaP +(1—tP)bP — ““p“’p)] dt = ("‘““bp) J, t%P1dt +

+1 a+1l

bP aaP+bP aaf+bP

[f t2P=1(tPaP + (1 — tP)bP) dt — —“a [ eans 1dt] == ( ) [ -
aaP+bP aaf+bP ap—1 o aplary)
ap(a+1) z_f( a+l ) s f L™ f(tpap + (1 —tP)bP) dt =

b (bP—tP ~1r(a)
fa (bP—aP) f(tp) ar— bp (bp ar)® Plasf(bP) <
1 _ _ 1 P bP

faP) J‘O tap=1+p g + f(bP) J‘O (tP—1 — tap=1+P)qt = zotf(am)J:Llf( ).

It means that

aaP+bP pr(at+)  prg o af(a")+f(bp)
f( a+1 )< (bP—aP)« la f(b )< a+1 (3'4)

This completes the proof. m
Remark 3. In Theorem 10
(1) If one takes p — 1, one has the inequality (1.3),
(2) If one takes p — 1, and after that if one takes @ = 1, one has the inequality (1.1).

Theorem 11. Let f: [a®,b”] — R be a convex function on [a?, b?] with f € X (a?, b?), then the

following Hermite-Hadamard type inequality for the right Katugampola fractional integral holds:
aP+ab? per(a+1) faP)+af ()

f( a+1 ) < (bP—aP)® PIy_f(a?) < T (3.5)
where —oo < aP? < bP < 0, @ >0 and p > 0.

Proof. Let a > 0.Since f is convex on [a”, bP], using Theorem 5, there is at least one line of

support
p aP+abP p_a P+abP p

A@P) < f (2) +m (20 - 25) < fF(xP) (3.6)

a+1

for all x” € [a?,b”] and m € [f’_ (%),fﬁr (%)] From (3.6) and convexity of f,
we have

AP + (1= t7)aP) = f (Z225) 4 m (tPbP + (1 — tP)aP — TX20) < F(ePbP + (1 -
tP)aP) < tPf(bP) + (1 — tP)f (a?) 3.7)

for all ¢ € [0,1]. Multiplying all sides of (3.7) with t#*?~1 and integrating over (0,1) respect to
t, we have
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1

ft“f’—l af + abP + tPbP + (1 — tP)a’ af + abP dt
f a+1 m ( )a a+1

0

_ af + ab®
=f a+1

1
af + ab? (1!
+m f t*PI(tPbP + (1 — tP)aP) dt — —f t*P-1dt
0

t*P-1qt

o'\“_*

a+1
0

1 (ap + abp> [a" +ab?  aP + ab” ] 1 (a/’ + a'bp>
m = -
ap

Tap a+1 ap(@+1) apla+1) a+1
1 b a-1
af —tP tPt
< f t*P7Lf(tPhP + (1 —tP)aP) dt = f <m> f(tP) b —ap dt
0 a
p* T (a)
BCEroT A
1 1
< f(bp)ft“"‘“"dt +f(af")f(t0‘f"1 — tP=14P)dt
0
1 f(a?)+af(”)
T ap a+1 '
It means that
aP+baPf pOT'(a+1) f@aP)+af(bP)
() < B Pl f(ar) < TERrRn, (38)

This completes the proof. m
Remark 4. In Theorem 11,

(1) If one takes p — 1, one has the inequality (1.4),
(2) If one takes p — 1, and after that if one takes @ = 1, one has the inequality (1.1).

Theorem 12. Let f: [a®, b”] — R be a convex function on [a?, b?] with f € X (a”, b?), then the
following Hermite-Hadamard type inequality for the Katugampola fractional integral holds:

G _ s |
2 = 2(bP-ar)@
where —oo < aP? < bP < 0, @ >0 and p > 0.
Proof. Adding the inequalities (3.1) and (3.5) side by side, then the multiplying the resulting
inequalities by % we have the inequalities (3.9). m

PIEf(aP) +  PIEf(bP)] < [T (39)

Remark 5. In Theorem 12,

(1) If one takes p — 1, one has the inequality (1.5),

(2) If one takes p — 1, and after that if one takes @ = 1, one has the inequality (1.1).
Corollary 1. The left hand side of (3.9) is better than the left hand side of (2.1).
Proof. Since f is convex on [a®, b”], it is clear from

aa® +b?  a® + ab” f (aap + b”) f (ap + abp)
fap+bp —f a+1 T aF1 < a+1 a+1
2 2 -

2
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4. LEMMAS

In this section we will prove two new identities used in forward results.

Lemma 2. Let f:1 € R - R be a differentiable function I°,a?,b? € I" with a? < bP. If the
fractional integrals exist and f' € L[a”, b”], then the following equality for the left Katugampola
fractional integral holds:
af(@P)+f(P) _ prla+1) _ p(P-af) (1 1
a+1 - (bP—aP)® p1g+f(bp) - Tfo (1 - (a + l)tpa)tp f (tpap +
(1 — tP)bP)dt 4.1)
where @ > 0 and p > 0.
Proof. It could be proven directly by applying the partial integration to the right hand side of the
equation (4.1) as follows:
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1
% f (1= (a+ DePYP T f (Pl + (1 = tP)bP)dt
0 1
ftp—lf(tpap + (1 —tP)bP)dt
0

p(b? —af)
a+1

1
—(a+1) f t* PP 1f (tPaf + (1 — t")bp)dt‘
0

p(b? —a?) |f(tPa? + (1= t*)bP) |'

a+1 p(aP —bP)

0

f(tPa? + (1 —tP)bP)  |*

p(af — bP)

—(a+1) ap

0

1
> i % f teP=1f(tPaf + (1 - tP)bP)dt‘
0

_ p* —a”)|f(a”) - f(bP) (a+1f(aP)
T a+1 p(af — bP) p(a? — bP)

1
%f tP 1 (tPa? + (1 — tP)bP)dt]
0
_ p(b? —aP)|af(a’) + f(bP)
T oa+1 p(bP — aP)
1
- —(Zptla)ff tP=1f(tPaf + (1 - tP)bP)dt]
0
1
= 7af(a’;):1f(bp) —ap f t*P1f(tPal + (1 — tP)bP)dt
0
b a-1
PY + f(bP bP — tP tP—1
- af(aa)+ 1f( ) — 4 f (bp - aP> f&) aP — bP de
af (@) +FBP) pT(a+1)
ST ar1 @m0

This completes the proof. =
Remark 6. In Lemma 2,

(1) If one takes p — 1, one has the inequality proved in [8, Lemma 3].
(2) If one takes p — 1, and after that if one takes @ = 1, one has the inequality

[2, Lemma 2.1].
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Lemma 3. Let f:1 S R - R be a differentiable function I°,a”,b? € I" with a? < bP. If the
fractional integrals exist and f’ € L[a”,b”], then the following equality for the right
Katugampola fractional integral holds:

f@P)+af®P) _ pT(a+l) pia py — p(P—a?) 1 _tP\A _ 1141 FI($P P
ey rarye ' Io-f(@) === [ @+ D = t7)* = 1JeP 71 f'(tPaf +

(1 —tP)bP)dt 4.2)
where @ > 0 and p > 0.

Proof. It could be proven directly by applying the partial integration to the right hand sie of the

equation (4.2) as follows:

p(l;f’+—1 K f[(“ + (1 —tP) — 1tP~1f'(tPaP + (1 — tP)bP)dt

_ PP —a?)
B a+1

—tPLf'(tPaP 3— (1 —tP)bP)]dt
LCT0] l(l — tP)F(tPaP + (1 — tP)bP) |

f [(a + D1 = tP)“P=1f(tPaP + (1 — tP)bP)

a+1 p(aP — bP)

+ m[u — )1 (tPaP + (1 — tP)bP)dt

1
- f tP~1f'(tPaf + (1 — tP)bP)dt
0
(a+1Df®") (a+Da
p(a? —bP)  af -

p(b? —af)
a+1

f(l tP)E1f(tPa? + (1 — tP)bP)dt]

_fPa? + (1= tP)bA) |

p@ =) |,
_pb? —a?)[[(a+ 1)f(b")
T oa+1 p(aP — bP)

fa”) = f(bP)

Mf (1= ) f (@Par + (1= ebPde| + =00

+

1
= %—'—alf(bp)_ ap f tap—lf(tpap + (1 _ tp)bp)dt
0
b a-1
f(@®) + af (b?) tP —af -1
=a—+1_apf<bp_ap) f(tp)mdt
_f@)+af®?) pT(a+1)
T a+1l (P -aP)® PIy_f(a).
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This completes the proof. m
Remark 7. In Lemma 3,

(1) If one takes p — 1, one has the inequality proved in [9, Lemma 3].
(2) If one takes p — 1, and after that if one takes @ = 1, one has the inequality

[2, Lemma 2.1].

5. SOME NEW KATUGAMPOLA FRACTIONAL TRAPEZOID TYPE INEQUALITIES
FOR CONVEX FUNCTIONS

In this section, we will prove some new Katugampola fractional trapezoid type inequalities
for convex functions by using Lemma 2 and Lemma 3.

Theorem 13. Let f:1 € R - R be a differentiable function on I°,a?,b? € I’ with a? < bP. If
f' € Llaf,b”] and |f'|? is convex on [a?, bP] for g = 1, then the following inequality for the left
Katugampola fractional integral holds:

a _ _1
af(@P)+f(?)  pT(a+1) "Ia“+f(b") S%Zl(a’.P)l q(|f’(ap)|qzz(a,[))+

a+1 (bP—aP)*
If' (bP)|9Z3(a, p))e (5.1)
where

1
2a 1 \a
Zi(ap) = pla+1) (a + 1) ’

a(Z + (a + 1)%)

)

Zy(a,p) = 5
2p(a+2)(a+ e
Z3(a! P) = Z1(a'P) - Zz(a; P),

witha >0 and p > 0.
Proof. By using Lemma 2, power mean inequality and the convexity of |f'|9, we have

af(aﬁ)+f(bﬂ)_par‘(a+1) pra p p(P-af) 1 _ PA+P=1| £1(+P AP
| e s PIaf (b )| < 2= 1 = (o + Deee|e M (tPaP +

(1 —=tP)bP)|dt <

- 1
p ) (f01|(1 —(a+ 1)t"“)t"_1|dt) % (f01|1 — (@ + DtPe|tP=1f' (tPal +
1

a+1
(1- tp)bp)|dt)5 <

p(bP-af)
a+1

(A0 = @+ Deryeetar) @ (111 - (o + Dere|er=1[eP | (@)1 +
(1 - )l eP)1de ' < 22D (1 — (o + Deryer=far) *x (1 @)1 1L -

1

(a + DtPHE2P~1dt + |f'(bP) |4 f01|(1 — (a + DtPHtP~L (1 - tP) dt); (5.2)

Calculating the appearing integrals in (5.2), we have
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0

1 = (a + DtPo)| P~ dt = || &(1 — (a+ DtrO)tP~1dt + f;pp((a + 1)tPe —

ap[ 1 ap| 1
DtP~tdt = | ‘/;tp‘ldt —(a+1) [ ‘/;tp(““)‘ldt +(a+1) fj,,Jth(a“)‘ldt -
a+1
ap[ 1 1
\/a:ﬂ ot oyt 2a 1
(57 (

3 A L) =Z(ap), (63

p p

tP tll(UH'l))

falpd\/:fp_ldt = (F p

1
-
and

0

ap[ 1
10 = (a + 1)ero)| 2P~ 1de = || J:lu — (@ + DtPO)t2P-1dt + f;,,F((a +1)eP —
a+1
ap| 1 ap| 1
)e2P~tdt = |, ‘/":tzﬂ‘ldt —(a+1 [ ‘/;tﬁ(“”)‘ldt +(a+1) [,

Pl 1
Na+1
ap[ 1

Nart + ((a+1)t"(“+2) _tz_") ! 1 (( 1 )2 _

tp(a+2)_1dt —

(tzﬁJ (a+1)t"(““))

1 20-1 4 — 1

f“p\/;t Pdt = 2p pla+2) 0 pla+2) 2p “"\/azﬂ “p\\a+1
2

2 1 \a a _

() m) =Zy(@p), G4
and

1@ = (@ + DtPD) [ eP1(1 = t#)dt = [[|(1 — (a + DeP)er~  de — [11(1 — (@ +
DtPA)L2P 1 dt = Z,(a, p) — Z,(a, p) = Z3(a, p). (5.5)

If we use (5.3) — (5.5) in (5.2) , we have (5.1). This completes the proof. m
Remark 8. In Theorem 13,

(1) If one takes p — 1, one has the inequality proved in [8, Theorem 5].
(2) If one takes p — 1, and after that if one takes @ = 1, one has the inequality

[11, Theorem 1].
Theorem 14. Let f:1 € R —> R be a differentiable function I°,a?,b? € I with a? < bP. If
f' € L[a®,b”] and |f'|9 is convex on [a”,bP] for ¢ > 1, and %+% = 1, then the following
inequality for the left Katugampola fractional integral holds:

SN P gy ) <

a+1 (bP—ar)*
1
p(bP—aP) 2 (1f@9@p-D+D+If' BP9 \a
= (Z4(a,pp) + Zs (@, p,p))1 X ( @D D@ DatD) ) (5.6)
where

ap\/;
Z4(a,p,p) = f 1 = (a + DtPH)PdLt,
)
Zs(a,p,p) = f ((a + 1)tP* — l)pdt,

ap[ 1
a+1
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witha >0 and p > 0.
Proof. By using Lemma 2, H6lder inequality and the convexity of |f'|7, we have

af(@P)+f(?)  pT(a+1) p(bP-aP) 1 -
| LD P p1g f 00| < 2 [ — (a4 Dl 1 (Pl +

1
(1= t2)bP)]dt < 2E=2D ({41 — (@ + Deee|Pde P x ([ 99\ (tPa? + (1 -

1

7 bP—aP) [ (1 > 1 ot e _
t0)pP)|7dt )" < P ([H1 — ( + Dere|Pae P x (f, [ @ D=a1f"(@”)]7 + 04 (1 —

1 1

TR 1
t)If' (bP)19]de )" < EC=22 ([0 = (e + Deeepae )P x (I (@)1 [y 0@+ D=ade +

1
If"(bP)]4 fol £aP=a(1 — tP) dt)q <
1

p(bP=aP) ( (1. pa(p Y o (/@)= +D+If (bP)9p\a _ p(bP=aP)
a+1 (fO |1 (a + l)t | dt) x ( (qlp—-1)+1)(p(g+1)—q+1) ) s a+1 x
1

[

VA = (@ + DRyt + f:p\/z((a +1)trr —1)7de | x
a+1

-

1
(If’(a")Iq(q(p—1)+1)+lf’(b")qu)E
(a(p—-D+1D)(p(g+1)—q+1)
This completes the proof. m

Remark 9. In Theorem 14,

(.7)

(1) If one takes p — 1, one has the inequality proved in [8, Theorem 6].
(2) If one takes p — 1, and after that if one takes @ = 1, one has the inequality

[2, Theorem 2.3].

Theorem 15. Let f:1 € R— R be a differentiable function I°,a?,b? € I" with a? < bP. If
f' € Lla”,b”] and |f'|9 is convex on [a”,b”] for q = 1, then the following inequality for the
right Katugampola fractional integral holds:

| flaP)+af(®P) _ p®Tla+1l)

pP_gP _1
oI £(@P)| < 222 7,0, ) R (U (5192, ) +

a+1 (bP-aP)«
1
|f' (@P)|Zg(a, p))e (5.8)
where
1
Z ) 2 @ 1
s(@p Tap+1 p(a+1> Pl

p_+1
- *® L )

Z7((Z,p) - (p+1)(p(a+1)+1) [ZP (a+1) + 1]'

ZS(a!p) = Z6(a'p) - Z7(a! P);

witha >0 and p > 0.
Proof. Similarly the proof of the Theorem 13, by using Lemma 3, power mean inequality and
convexity of |f'|9, we have (5.8). m

Remark 10. In Theorem 15,

(1) If one takes p — 1, one has the inequality proved in [9, Theorem 5].
(2) If one takes p — 1, and after that if one takes @ = 1, one has the inequality

[11, Theorem 1].
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Theorem 16. Let f:1 € R — R be a differentiable function I°,a?,b? € I" with a? < bP. If
f" € Llar,b”] and |f'|9 is convex on [a”,bP] for g > 1, and %+% =1, then the following
inequality for the right Katugampola fractional integral holds:

| LEDIED D g, 0| <

a+1 (bP—aP)*
1
bP—af L (If'@)9p+If' BP9\ q
p(uﬂa 2 (Z4(a, p,1) + Zs(a, p, D))? X (%)q (5.9)

witha > 0, p > 0 and Z,(a, p,p), Zs(a, p, p) are the same as in Theorem14.
Proof. Similarly the proof of the Theorem 14, by using Lemma 3, Holder inequality and
convexity of |f'|9, we have (5.9). m

Remark 11. In Theorem 15,

(1) If one takes p — 1, one has the inequality proved in [9, Theorem 6].
(2) If one takes p — 1, and after that if one takes @ = 1, one has the inequality

[2, Theorem 2.3].
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