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ABSTRACT 

 

In this paper, we first give a necessary and sufficient condition for convergence of Picard-S iteration process 

to a fixed point of continuous functions on an arbitrary interval and prove equivalence of Picard-S and P 
iterative processes. We also compare the rate of convergence between Picard-S and some others iteration 

processes in the literature. Finally, some numerical examples for comparing the rate of convergence of those 

methods are also given.  
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1. INTRODUCTION AND PRELIMINARIES 

 

Iterative methods are popular tools to approximate fixed points of nonlinear mappings. They 

are designed to be applied in solving equations arising in physical formulation but there is no 

systematic study of the numerical aspects of these iterative schemes. In computational 

mathematics, it is of vital interest to know which of the given iterative procedures converge faster 

to a desired solution, commonly known as the rate of convergence. Thus, when studied an 

iterative procedure, it should be considered two criteria which are the faster and the simplify. In 

this direction, some of notable studies were conducted by Mann, Ishikawa, Noor, Suantai, 

Karakaya, Gursoy, Dogan, Yildirim, Karahan, Sainuan, Agarwal, Rhoades and Khan [1-17]. In 

addition, the fixed point mappings were studied as much as studies on the iterative methods. 

Different varieties of these mappings are available in the literature. The well known of them, are 

contraction mappings, nonexpansive mappings and Lipschitzian mappings, and these are the 

continuous ones. Therefore, in this study, we handle the general mapping which is a class of 

continuous mapping. 

Let 𝐸 be a closed interval on the real line and ℘:𝐸 → 𝐸 be a continuous function. A point 

𝑝 ∈ 𝐸 is a fixed point of ℘ if ℘(𝑝) = 𝑝. We denote by 𝐹(℘) the set of fixed points of ℘. 

Now, we will consider some of these schemes related to this work. The sequence {𝑥𝑛}𝑛=1
∞  

defined by 
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{
𝑥1 ∈ 𝐸,

𝑥𝑛+1 = ℘(𝑥𝑛), (𝑛 ∈ ℕ),
                                                                                                          (1.1) 

 

is called to Picard iterat ive process. 

Mann [3] introduced Mann iterative process as follows: 
 

{
𝑥1 ∈ 𝐸,

𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛℘(𝑥𝑛), (𝑛 ∈ ℕ),
                                                                                 (1.2) 

 

where {𝛼𝑛}𝑛=1
∞ ∈ [0,1]. In 1953, Mann showed that if ℘ is a continuous real function on a 

unit interval of the real line with a unique fixed point, then the Mann iteration converges to a 

unique fixed point of ℘. 

Ishikawa [4] introduced Ishikawa iterative process as follows: 
 

{

𝑥1 ∈ 𝐸,

𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛℘(𝑦𝑛)

𝑦𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛℘(𝑥𝑛)(𝑛 ∈ ℕ),
                                                                                 (1.3) 

 

where {𝛼𝑛}𝑛=1
∞  and {𝛽𝑛}𝑛=1

∞ ∈ [0,1]. Clearly, the Mann iteration process are special case of 

the Ishikawa iteration process. 

M.A. Noor [5] introduced Noor iterative process as follows: 
 

{
 

 
𝑥1 ∈ 𝐸,

𝑥𝑛+1 = (1 − 𝛾𝑛)𝑥𝑛 + 𝛾𝑛℘(𝑦𝑛)

𝑦𝑛 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛℘(𝑧𝑛)

𝑧𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛℘(𝑥𝑛)(𝑛 ∈ ℕ),

                                                                                 (1.4) 

 

where {𝛼𝑛}𝑛=1
∞ , {𝛽𝑛}𝑛=1

∞  and {𝛾𝑛}𝑛=1
∞ ∈ [0,1]. Clearly, the Mann and Ishikawa iteration 

processes are special cases of the Noor iteration process. 

In 1974, Rhoades [6] obtained the convergence result to Mann iteration for a class of 

continuous and nondecreasing functions on a closed unit interval, and then he [7] extended the 

results for Ishikawa iterations. After that in 1991, Borwein and Borwein [8] obtained the 

convergence result to Mann iteration for continuous functions on a bounded closed interval. Qing 

and Qihou [9] extended results in [8] to an arbitrary interval and to Ishikawa iteration and 

presented a necessary and sufficient condition for the convergence of Ishikawa iteration of 

continuous functions on an arbitrary interval. 

Phuengrattana and Suantai [5] introduced SP iterative process as follows: 
 

{
 

 
𝑥1 ∈ 𝐸,

𝑥𝑛+1 = (1 − 𝛾𝑛)𝑦𝑛 + 𝛾𝑛℘(𝑦𝑛)

𝑦𝑛 = (1 − 𝛼𝑛)𝑧𝑛 + 𝛼𝑛℘(𝑧𝑛)

𝑧𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛℘(𝑥𝑛)(𝑛 ∈ ℕ),

                                                                                 (1.5) 

 

where {𝛼𝑛}𝑛=1
∞ , {𝛽𝑛}𝑛=1

∞  and {𝛾𝑛}𝑛=1
∞ ∈ [0,1]. 

They presented a necessary and sufficient condition for the convergence of SP-iteration [10] 

of continuous functions on an arbitrary interval. Also, they compared the rate of convergence of 

Mann, Ishikawa, Noor iterations and SP-iteration by numerical examples and concluded that SP-

iteration converges faster than all of them. 

In 2007, Agarwal et all [11] introduced S iterative process as follows: 
 

{

𝑥1 ∈ 𝐸,

𝑥𝑛+1 = (1 − 𝛼𝑛)℘(𝑥𝑛) + 𝛼𝑛℘(𝑦𝑛)

𝑦𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛℘(𝑥𝑛)(𝑛 ∈ ℕ),
                                                                                 (1.6) 

 

where {𝛼𝑛}𝑛=1
∞  and {𝛽𝑛}𝑛=1

∞ ∈ [0,1]. They proved some convergence theorems for uniformly 

continuous nearly asymptotically nonexpansive mappings. However, I. Karahan [18] proved some 
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convergence theorems for S-iteration method for continuous functions defined on an arbitrary 

interval. 

In 2013, Karakaya et al. [12] introduced a new three step iterative process as follows: 
 

{
 

 
𝑥1 ∈ 𝐸,

𝑥𝑛+1 = (1 − 𝛾𝑛 − 𝑎𝑛)𝑦𝑛 + 𝑎𝑛℘(𝑦𝑛) + 𝛾𝑛℘(𝑧𝑛)

𝑦𝑛 = (1 − 𝛼𝑛 − 𝑏𝑛)𝑧𝑛 + 𝑏𝑛℘(𝑥𝑛) + 𝛼𝑛℘(𝑧𝑛)

𝑧𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛℘(𝑥𝑛)(𝑛 ∈ ℕ),                      

                                                              (1.7) 

 

where {𝛼𝑛}𝑛=1
∞ , {𝛽𝑛}𝑛=1

∞ , {𝑎𝑛}𝑛=1
∞ , {𝑏𝑛}𝑛=1

∞ and {𝛾𝑛}𝑛=1
∞ ∈ [0,1]. 

In 2013, Kadioglu and Yildirim, [13] introduced KY iterative process as follows: 
 

{
 

 
𝑥1 ∈ 𝐸,

𝑥𝑛+1 = (1 − 𝛾𝑛 − 𝑎𝑛)𝑥𝑛 + 𝑎𝑛℘(𝑦𝑛) + 𝛾𝑛℘(𝑧𝑛)

𝑦𝑛 = (1 − 𝛼𝑛 − 𝑏𝑛)𝑥𝑛 + 𝑏𝑛℘(𝑥𝑛) + 𝛼𝑛℘(𝑧𝑛)

𝑧𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛℘(𝑥𝑛)(𝑛 ∈ ℕ),                      

                                                              (1.8) 

 

where {𝛼𝑛}𝑛=1
∞ , {𝛽𝑛}𝑛=1

∞ , {𝑎𝑛}𝑛=1
∞ , {𝑏𝑛}𝑛=1

∞ and {𝛾𝑛}𝑛=1
∞ ∈ [0,1]. 

In 2013, Khan [14] introduced Picard-Mann Hybrid iterative process as follows: 
 

{

𝑥1 ∈ 𝐸,

𝑥𝑛+1 = ℘(𝑦𝑛)

𝑦𝑛 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛℘(𝑥𝑛)(𝑛 ∈ ℕ),
                                                                                 (1.9) 

 

where {𝛼𝑛}𝑛=1
∞ , {𝛽𝑛}𝑛=1

∞ ∈ [0,1]. In [15], Karahan and Ozdemir presented a necessary and 

sufficient condition for the convergence of the PMH-iterative process of continuous 

nondecreasing functions on an arbitrary interval. They also gave the numerical examples for the 

PMH-iterative process to compare with the Mann, Ishikawa, Noor and SP iterative processes and 

concluded that PMH-iterative pracess converges faster than the others. 

Gürsoy and Karakaya [16] introduced Picard-S iterative process as follows: 
 

{
 

 
𝑥1 ∈ 𝐸,

𝑥𝑛+1 = ℘(𝑦𝑛)

𝑦𝑛 = (1 − 𝛼𝑛)℘(𝑥𝑛) + 𝛼𝑛℘(𝑧𝑛)

𝑧𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛℘(𝑥𝑛)(𝑛 ∈ ℕ),

                                                                               (1.10) 

 

where {𝛼𝑛}𝑛=1
∞ , {𝛽𝑛}𝑛=1

∞ ∈ [0,1]. 
Recently, P. Sainuan [17] introduced P- iterative process as follows: 

 

{
 

 
𝑥1 ∈ 𝐸,

𝑠𝑛+1 = (1 − 𝛾𝑛)℘(𝑝𝑛) + 𝛾𝑛℘(𝑟𝑛)

𝑝𝑛 = (1 − 𝛼𝑛)𝑟𝑛 + 𝛼𝑛℘(𝑟𝑛)

𝑟𝑛 = (1 − 𝛽𝑛)𝑠𝑛 + 𝛽𝑛℘(𝑠𝑛)(𝑛 ∈ ℕ),

                                                                                     (1.11) 

  

where {𝛼𝑛}𝑛=1
∞ , {𝛽𝑛}𝑛=1

∞  and {𝛾𝑛}𝑛=1
∞ ∈ [0,1]. 

In this paper, we give a necessary and sufficient condition for the convergence of the Picard-S 

iterative process of continuous functions on an arbitrary interval. We also prove that the Mann, 

Ishikawa, Noor, SP, S, PMH, KDGE (1.7), KY, P and SP- iterative processes are equivalent and 

the Picard–S iterative process converges faster than the others for the class of continuous and 

nondecreasing functions. We also compare the rate of convergence of them by numerical 

examples. 

Now, we will give some useful Lemmas, Definitions and Theorems for proofs of our main 

results. 
 

Lemma 1 [17] Let E be a closed interval on the real line and ℘:E → E be a continuous and non-

decreasing function. Let {αn}n=1
∞ , {βn}n=1

∞  and {γn}n=1
∞  be real sequences. For x1 ∈ E, let {xn}n=1

∞  

be defined by (1.11). Then the following hold: 
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i)  If ℘(𝑥1) < 𝑥1, then ℘(𝑥𝑛) ≤ 𝑥𝑛 for all 𝑛 ≥ 1 and {𝑥𝑛}𝑛=1
∞  is non-increasing. 

ii)  If ℘(𝑥1) > 𝑥1, then ℘(𝑥𝑛) ≥ 𝑥𝑛 for all 𝑛 ≥ 1 and {𝑥𝑛}𝑛=1
∞  is non-decreasing.  

 

Definition 1 [10] Let E be a closed interval on the real line and ℘:E → E be a continuous 

function. Suppose that {xn}n=1
∞  and {sn}n=1

∞  two iterative processes which converge to the fixed 

point q of ℘. Then, {xn}n=1
∞  is said to converge faster than {sn}n=1

∞  if  
 

|𝑥𝑛 − 𝑞| ≤ |𝑠𝑛 − 𝑞|   for all 𝑛 ∈ ℕ. 
 

Theorem 1 [17] Let E be a closed interval on the real line and ℘: E → E be a continuous, non-

decreasing function such that F(℘) is nonempty and bounded and {λn}n=1
∞ , {αn}n=1

∞ , {βn}n=1
∞ ∈

[0,1]. Also for the initial values x1 = s1 ∈ E, let {xn}n=1
∞  and {sn}n=1

∞  be defined by (1.11) and 
(1.6), respectively. If {sn}n=1

∞  iterative process converges to a fixed point q ∈ F(℘), then {xn}n=1
∞  

itertive process converges to same fixed point q ∈ F(℘). Moreover, the P- iterative process 

converges faster than the S- iterative process.  

 

2. MAIN RESULTS 

 

Lemma 2 Let E be a closed interval on the real line and ℘:E → E be a continuous and non-

decreasing function. Let {αn}n=1
∞  and {βn}n=1

∞ ∈ [0,1]. For x1 ∈ E, let {xn}n=1
∞  be defined by 

(1.10). Then the followings hold: 
  

i)  If ℘(𝑥1) < 𝑥1, then ℘(𝑥𝑛) ≤ 𝑥𝑛 for all 𝑛 ≥ 1 and {𝑥𝑛}𝑛=1
∞  is non-increasing. 

ii)  If ℘(𝑥1) > 𝑥1, then ℘(𝑥𝑛) ≥ 𝑥𝑛 for all 𝑛 ≥ 1 and {𝑥𝑛}𝑛=1
∞  is non-decreasing. 

 

Proof. (𝑖)Let ℘(𝑥1) < 𝑥1. Assume that ℘(𝑥𝑘) ≤ 𝑥𝑘 for 𝑘 > 1. Then by (1.10) we gate ℘(𝑥𝑘) ≤
𝑧𝑘 ≤ 𝑥𝑘. Since ℘ non-decreasing, we have ℘(𝑧𝑘) ≤ ℘(𝑥𝑘) ≤ 𝑧𝑘 ≤ 𝑥𝑘. Again using the same 

arguments, we obtain  
 

℘(𝑧𝑘) ≤ 𝑦𝑘 ≤ ℘(𝑥𝑘) ≤ 𝑧𝑘 ≤ 𝑥𝑘 
 

℘(𝑦𝑘) ≤ ℘(𝑧𝑘) ≤ 𝑦𝑘 ≤ ℘(𝑥𝑘) ≤ 𝑧𝑘 ≤ 𝑥𝑘 
 

and since  
 

𝑥𝑘+1 = ℘(𝑦𝑘), 
 

we have  
 

𝑥𝑘+1 = ℘(𝑦𝑘) ≤ ℘(𝑧𝑘) ≤ 𝑦𝑘 ≤ ℘(𝑥𝑘) ≤ 𝑧𝑘 ≤ 𝑥𝑘 . 
 

Using the non-decreasing property of ℘, we obtain 
 

℘(𝑥𝑘+1) ≤ 𝑥𝑘+1 = ℘(𝑦𝑘) ≤ ℘(𝑧𝑘) ≤ 𝑦𝑘 ≤ ℘(𝑥𝑘) ≤ 𝑧𝑘 ≤ 𝑥𝑘 .                                           (2.1) 
 

By the induction, we have  

 

℘(𝑥𝑛) ≤ 𝑥𝑛. 
 

Hence 
 

℘(𝑦𝑛) ≤ ℘(𝑧𝑛) ≤ ℘(𝑥𝑛). 
 

Considering (2.1), we can conclude that 
 

𝑥𝑛+1 = ℘(𝑦𝑛) ≤ ℘(𝑧𝑛) ≤ ℘(𝑥𝑛) ≤ 𝑥𝑛, for all 𝑛 ∈ ℕ. 
 

Therefore, the sequence (𝑥𝑛)𝑛=1
∞  is non-increasing. 

(𝑖𝑖) By using the same argument as in (𝑖), We obtain the desired result.  
 

Theorem 2 Let E be a closed interval on the real line and ℘:E → E be a continuous and non-

decreasing function. Let {αn}n=1
∞  and {βn}n=1

∞ ∈ [0,1]. For x1 ∈ E, let {xn}n=1
∞  be defined by 

(1.10). Then {xn}n=1
∞  is bounded if and only if {xn}n=1

∞  converges to a fixed point of ℘.  
 

Proof. Assume that  (𝑥𝑛)𝑛=1
∞  is bounded. If ℘(𝑥1) = 𝑥1, we have  
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𝑥2 = ℘(𝑦1) = 𝑥1
𝑦1 = (1 − 𝛼1)℘(𝑥1) + 𝛼1℘(𝑧1) = 𝑥1
𝑧1 = (1 − 𝛽1)𝑥1 + 𝛽1℘(𝑥1) = 𝑥1.

 

 

It is clear that 𝑥𝑛 = 𝑥1 and lim𝑛→∞𝑥𝑛 = 𝑥1, for all 𝑛 ≥ 1. 

If ℘(𝑥1) < 𝑥1 or ℘(𝑥1) > 𝑥1, then, by Lemma (2), we obtain that (𝑥𝑛)𝑛=1
∞  is non-increasing 

or non-decreasing. Since {𝑥𝑛}𝑛=1
∞  is bounded, it implies that {𝑥𝑛}𝑛=1

∞  is convergent. 

Since (𝑥𝑛)𝑛=1
∞  is convergent, there is a lim𝑛→∞𝑥𝑛 = 𝑞 ∈ 𝐸. Using the continuity of ℘ and 

boundedness of (𝑥𝑛)𝑛=1
∞ , we obtain {℘(𝑥𝑛)}𝑛=1

∞  is bounded. In addition, Picard-S iteration 

method can be edited as follows: 
 

𝑥𝑛+1 = ℘(𝑦𝑛) 
 

𝑦𝑛 −℘(𝑥𝑛) = 𝛼𝑛[℘(𝑧𝑛) − ℘(𝑥𝑛)] 
 

𝑧𝑛 − 𝑥𝑛 = 𝛽𝑛[℘(𝑥𝑛) − 𝑥𝑛]. 
 

We show in two steps that 𝑞 is a fixed point of ℘. 
 

Step 1 If ℘(𝑥1) < 𝑥1, then ℘(𝑥𝑛) ≤ 𝑥𝑛 for all 𝑛 ≥ 1 and since lim𝑛→∞𝑥𝑛 = 𝑞 ∈ 𝐸, it is clear 

that lim𝑛→∞℘(𝑥𝑛) = ℘(𝑞) ≤ lim𝑛→∞𝑥𝑛 = 𝑞 ∈ 𝐸. Also, the following inequality was obtained 

by Lemma (2) 
 

𝑥𝑛+1 = ℘(𝑦𝑛) ≤ ℘(𝑧𝑛) ≤ ℘(𝑥𝑛), for all 𝑛 ∈ ℕ. 
 

Hence  
 

𝑞 = lim
𝑛→∞

𝑥𝑛+1 = lim
𝑛→∞

℘(𝑦𝑛) ≤ lim
𝑛→∞

℘(𝑧𝑛) ≤ lim
𝑛→∞

℘(𝑥𝑛) = ℘(𝑞). 
 

It contradicts our assumption. Therefore, ℘(𝑞) = 𝑞. 
 

Step 2 If ℘(𝑥1) > 𝑥1, then ℘(𝑥𝑛) ≥ 𝑥𝑛 for all 𝑛 ≥ 1 and since lim𝑛→∞𝑥𝑛 = 𝑞 ∈ 𝐸, it is clear 

that lim𝑛→∞𝑥𝑛 = 𝑞 ≤ lim𝑛→∞℘(𝑥𝑛) = ℘(𝑞) ∈ 𝐸. Also, the following inequalty was obtained by 

Lemma (2) 
 

𝑥𝑛+1 = ℘(𝑦𝑛) ≥ ℘(𝑧𝑛) ≥ ℘(𝑥𝑛), forall𝑛 ∈ ℕ. 
 

Hence  
 

𝑞 = lim
𝑛→∞

𝑥𝑛+1 = lim
𝑛→∞

℘(𝑦𝑛) ≥ lim
𝑛→∞

℘(𝑧𝑛) ≥ lim
𝑛→∞

℘(𝑥𝑛) = ℘(𝑞). 
 

It contradicts our assumption. Therefore, ℘(𝑞) = 𝑞. 

Hence 𝑞 is a fixed point of ℘ and {𝑥𝑛}𝑛=1
∞  converge to 𝑞.  

 

Lemma 3  Let E be a closed interval on the real line and ℘:E → E be a continuous, non-

decreasing function and (αn)n=1
∞ , {βn}n=1

∞ ∈ [0,1]. Also for the initial value x1 ∈ E, let {xn}n=1
∞  

be defined by (1.10). Then, the following assertions are true. 
  

i)    If 𝑞 ∈ 𝐹(℘) with 𝑥1 > 𝑞, then 𝑥𝑛 ≥ 𝑞 for all 𝑛 ≥ 1. 

ii)   If 𝑞 ∈ 𝐹(℘) with 𝑥1 < 𝑞, then 𝑥𝑛 ≤ 𝑞 for all 𝑛 ≥ 1.  
  

Proof. (𝑖) By using our claim and ℘’s non-decreasing, we obtain ℘(𝑥1) ≥ ℘(𝑞). By Picard-S 

iterative process, we have 
 

𝑧1 = (1 − 𝛽1)𝑥1 + 𝛽1℘(𝑥1) ≥ (1 − 𝛽1)𝑞 + 𝛽1℘(𝑞) = 𝑞 
 

𝑦1 = (1 − 𝛼1)℘(𝑥1) + 𝛼1℘(𝑧1) ≥ (1 − 𝛼1)℘(𝑞) + 𝛼1℘(𝑞) = 𝑞. 
 

They imply that ℘(𝑧1) ≥ ℘(𝑞) and ℘(𝑦1) ≥ ℘(𝑞). Again we rehandle the Picard-S iterative 

process, we obtain 
 

𝑥2 = ℘(𝑦1) ≥ ℘(𝑞) = 𝑞. 
 

Suppose that 𝑥𝑘 ≥ 𝑞 for 𝑘 > 2. Then ℘(𝑥𝑘) ≥ ℘(𝑞) = 𝑞. 

By Picard-S iterative process, we have 
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𝑧𝑘 = (1 − 𝛽𝑘)𝑥𝑘 + 𝛽𝑘℘(𝑥𝑘) ≥ (1 − 𝛽𝑘)𝑞 + 𝛽𝑘℘(𝑞) = 𝑞 
 

𝑦𝑘 = (1 − 𝛼𝑘)℘(𝑥𝑘) + 𝛼𝑘℘(𝑧𝑘) ≥ (1 − 𝛼𝑘)℘(𝑞) + 𝛼𝑘℘(𝑞) = 𝑞. 
 

Thus ℘(𝑧𝑘) ≥ ℘(𝑞) = 𝑞 and ℘(𝑦𝑘) ≥ ℘(𝑞) = 𝑞. Also, we obtain 
 

𝑥𝑘+1 = ℘(𝑦𝑘) ≥ ℘(𝑞) = 𝑞. 
 

By induction, we have 
 

𝑥𝑛 ≥ 𝑝, for all 𝑛 ≥ 1. 
 

(𝑖𝑖) Using the same arguments in (𝑖), it can easily be shown that this assertion is correct. For 

this reason, the proof will not be given.  
 

Lemma 4  Let E be a closed interval on the real line and ℘:E → E be a continuous, non-

decreasing function and {λn}n=1
∞ , {αn}n=1

∞ , {βn}n=1
∞ ∈ [0,1]. Also for the initial values x1 = s1 ∈

E, let {xn}n=1
∞  and {sn}n=1

∞  be defined by (1.10) and (1.11), respectively. Then, the following 

assertions are true. 
  

i)   If ℘(𝑠1) < 𝑠1, then 𝑥𝑛 ≤ 𝑠𝑛  for all 𝑛 ≥ 1. 

ii)    If ℘(𝑠1) > 𝑠1, then 𝑥𝑛 ≥ 𝑠𝑛  for all 𝑛 ≥ 1.  
 

Proof. (𝑖) Since 𝑥1 = 𝑠1 we have ℘(𝑥1) < 𝑥1. By (1.10) and ℘ is non-decreasing, we obtain  
 

℘(𝑧1) ≤ ℘(𝑥1) ≤ 𝑧1 ≤ 𝑥1 
 

and 
 

℘(𝑦1) ≤ ℘(𝑧1) ≤ ℘(𝑥1) ≤ 𝑧1 ≤ 𝑥1. 
 

From Lemma 3.1 in the [17], we have 
 

℘(𝑝𝑛) ≤ ℘(𝑟𝑛) ≤ ℘(𝑠𝑛) ≤ 𝑟𝑛 ≤ 𝑠𝑛. 
 

Thus, by (1.10) and (1.11), we get 
 

𝑧1 − 𝑠1 = (1 − 𝛽1)𝑥1 + 𝛽1℘(𝑥1) − 𝑠1 ≤ 0 
 

which implies that 𝑧1 ≤ 𝑠1. That is, ℘(𝑦1) ≤ ℘(𝑧1) ≤ ℘(𝑠1), 
 

𝑧1 − 𝑟1 = (1 − 𝛽1)𝑥1 + 𝛽1℘(𝑥1) − (1 − 𝛽1)𝑠1 − 𝛽1℘(𝑠1) = 0 
 

which implies that 𝑧1 = 𝑟1. That is, ℘(𝑦1) ≤ ℘(𝑧1) = ℘(𝑟1), 
 

𝑦1 − 𝑝1 = (1 − 𝛼1)℘(𝑥1) + 𝛼1℘(𝑧1) − (1 − 𝛼1)𝑟1 − 𝛼1℘(𝑟1) 
= (1 − 𝛼1)(℘(𝑥1) − 𝑟1) ≤ 0 

 

which implies that 𝑦1 ≤ 𝑝1. That is, ℘(𝑦1) ≤ ℘(𝑝1) ≤ ℘(𝑟1) and 
 

𝑥2 − 𝑠2 = ℘(𝑦1) − (1 − 𝜆1)℘(𝑝1) − 𝜆1℘(𝑟1) 
≤ ℘(𝑦1) − (1 − 𝜆1)℘(𝑝1) − 𝜆1℘(𝑝1) 

≤ ℘(𝑦1) − ℘(𝑝1) 
≤ 0 

 

which implies that 𝑥2 ≤ 𝑠2. That is, ℘(𝑥2) ≤ ℘(𝑠2). 
We suppose that 𝑥𝑘 ≤ 𝑠𝑘, for 𝑘 ∈ ℕ. Then ℘(𝑥𝑘) ≤ ℘(𝑠𝑘). From Lemma 3.1 in [17], we 

have ℘(𝑠𝑘) ≤ 𝑠𝑘 and from Lemma 2, we have ℘(𝑥𝑘) ≤ 𝑥𝑘. This follows that  
 

℘(𝑥𝑘) ≤ 𝑧𝑘 ≤ 𝑥𝑘 ≤ 𝑠𝑘 . 
 

From properties of ℘, we get 
 

℘(𝑦𝑘) ≤ ℘(𝑧𝑘) ≤ ℘(𝑠𝑘). 
 

Also, by (1.10) and (1.11), we get 
 
 

 

𝑦𝑘 − 𝑝𝑘 = (1 − 𝛼𝑘)℘(𝑥𝑘) + 𝛼𝑘℘(𝑧𝑘) − (1 − 𝛼𝑘)𝑟𝑘 − 𝛼𝑘℘(𝑟𝑘) 
≤ (1 − 𝛼𝑘)(℘(𝑥𝑘) − 𝑟𝑘) 
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≤ 0  
 

which implies that 𝑦𝑘 ≤ 𝑝𝑘. That is, ℘(𝑦𝑘) ≤ ℘(𝑝𝑘) ≤ ℘(𝑟𝑘) and 
 

𝑥𝑘+1 − 𝑠𝑘+1 = ℘(𝑦𝑘) − (1 − 𝜆𝑘)℘(𝑝𝑘) − 𝜆𝑘℘(𝑟𝑘) 
≤ ℘(𝑦𝑘) − (1 − 𝜆𝑘)℘(𝑝𝑘) − 𝜆𝑘℘(𝑝𝑘) 

≤ ℘(𝑦𝑘) − ℘(𝑝𝑘) 
≤ 0 

 

we conclude that 𝑥𝑘+1 ≤ 𝑠𝑘+1. That is, ℘(𝑥𝑘+1) ≤ ℘(𝑠𝑘+1). 
By induction, we obtain the desired result 𝑥𝑛 ≤ 𝑠𝑛, for all 𝑛 ≥ 1. 
(𝑖𝑖) Using the same arguments in (𝑖), we can easily show that this assertion. For this reason, 

the proof of (𝑖𝑖) will not be given.  

The next proposition shows that the convergence of Picard–S iterative process depends on 

how far the initial point from the fixed point set. 
 

Proposition 1  Let E be a closed interval on the real line and ℘:E → E be a continuous, non-

decreasing function and {αn}n=1
∞ , {βn}n=1

∞ ∈ [0,1]. Also for the initial values x1 ∈ E, let {xn}n=1
∞  

be defined by (1.10). Then, the following assertions are true.   
 

i)   𝐹(℘) is nonempty and bounded with 𝑥1 < inf{𝑞 ∈ 𝐸: 𝑞 = ℘(𝑞)}. If ℘(𝑥1) < 𝑥1, then the 

sequence {𝑥𝑛}𝑛=1
∞  defined by Picard–S iterative process does not converge to a fixed point of ℘. 

ii)    𝐹(℘) is nonempty and bounded with 𝑥1 > sup{𝑞 ∈ 𝐸: 𝑞 = ℘(𝑞)}. If ℘(𝑥1) > 𝑥1, then 

the sequence {𝑥𝑛}𝑛=1
∞  defined by Picard–S iterative process does not converge to a fixed point of 

℘.  
 

Proof.  If ℘ (𝑎)  =  𝑎 or ℘ (𝑏)  =  𝑏, we are done. Otherwise, ℘ (𝑎)  >  𝑎 and ℘ (𝑏)  <  𝑏. 

Consider the function𝑔(𝑥)  =  ℘ (𝑥)  −  𝑥. Then 𝑔(𝑎)  >  0  while 𝑔(𝑏)  <  0. By the 

Intermediate Value Theorem, since g is also continuous, there exists 𝑥0  ∈  [𝑎, 𝑏]  such that 

𝑔(𝑥0)  =  0, or ℘ (𝑥0)  =  𝑥0. Thus, we have 𝐹(℘)  . Since ℘(𝑥) [𝑎, 𝑏] for all 𝑛 ∈ 𝑁 and 

[𝑎, 𝑏] is bounded, then 𝐹(℘) is bounded too.) 
 

Now we will show that the (𝑖) and (𝑖𝑖) claims are provided. 
(𝑖) By Lemma 2 and by assertion of (𝑖), {𝑥𝑛}𝑛=1

∞  is non-increasing and 𝑥1 < inf{𝑞 ∈ 𝐸: 𝑞 =
℘(𝑞)}, respectively. Therefore, 𝑞 cannot be one of the term of the sequence {𝑥𝑛}𝑛=1

∞ . Then, the 

sequence {𝑥𝑛}𝑛=1
∞  defined by Picard–S iterative process does not converge to a fixed point of ℘. 

(𝑖𝑖) By Lemma 2 and by assertion of (𝑖), {𝑥𝑛}𝑛=1
∞  is non-decreasing and 𝑥1 > sup{𝑞 ∈

𝐸: 𝑞 = ℘(𝑞)}, respectively. Therefore, q cannot be one of the term of the sequence {𝑥𝑛}𝑛=1
∞ . 

Then, the sequence {𝑥𝑛}𝑛=1
∞  defined by Picard–S iterative process does not converge to a fixed 

point of ℘. 
 

Theorem 3 Let 𝐸 be a closed interval on the real line and ℘: 𝐸 → 𝐸 be a continuous, non-

decreasing function such that 𝐹(℘) is nonempty and bounded and {𝜆𝑛}𝑛=1
∞ , {𝛼𝑛}𝑛=1

∞ , {𝛽𝑛}𝑛=1
∞ ∈

[0,1]. Also for the initial values 𝑥1 = 𝑠1 ∈ 𝐸, let {𝑥𝑛}𝑛=1
∞  and {𝑠𝑛}𝑛=1

∞  be defined by (1.10) and 
(1.11) respectively. If {𝑥𝑛}𝑛=1

∞  and {𝑠𝑛}𝑛=1
∞  converge to same fixed point 𝑞 ∈ 𝐹(℘), then, the 

Picard–S iterative process converges faster than the P- iterative process.  
 

Proof. In [17], it was shown that P iterative process converges to fixed point of ℘. Let 𝑘 =
inf{𝑞 ∈ 𝐸: 𝑞 = ℘(𝑞)} and 𝑡 = sup{𝑞 ∈ 𝐸: 𝑞 = ℘(𝑞)}. Our proof will be analyzed in three cases. 
 

Case 1: Let 𝑡 < 𝑥1 = 𝑠1. From Proposition 1, we get ℘(𝑥1) < 𝑥1 and ℘(𝑠1) < 𝑠1. From Lemma 

4 (𝑖), we have 𝑥𝑛 ≤ 𝑠𝑛 for all 𝑛 ≥ 1. By Using Picard-S iterative process and mathematical 

induction, we can show that 𝑡 ≤ 𝑥𝑛. Thus, we obtain 
 

𝑞 ≤ 𝑥𝑛 ≤ 𝑠𝑛, 
 

so 
 

|𝑥𝑛 − 𝑞| ≤ |𝑠𝑛 − 𝑞| 
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for all 𝑛 ≥ 1. That is, {𝑥𝑛}𝑛=1
∞  itartive process converges to 𝑞 ∈ 𝐹(℘) faster than {𝑠𝑛}𝑛=1

∞  

iterative process. 
 

Case 2: Let 𝑘 > 𝑥1 = 𝑠1. From Proposition 1, we get ℘(𝑥1) > 𝑥1 and ℘(𝑠1) > 𝑠1. From Lemma 

4 (𝑖𝑖), we have 𝑥𝑛 ≥ 𝑠𝑛 for all 𝑛 ≥ 1. By Using Picard-S iterative process and mathematical 

induction, we can show that 𝑥𝑛 ≤ 𝑘. Thus, we obtain 
 

𝑠𝑛 ≤ 𝑥𝑛 ≤ 𝑞, 
 

so 
 

0 ≤ |𝑥𝑛 − 𝑞| ≤ |𝑠𝑛 − 𝑞| 
 

for all 𝑛 ≥ 1. It follows that {𝑥𝑛}𝑛=1
∞  itartive process converges to 𝑞 ∈ 𝐹(℘) faster than 

{𝑠𝑛}𝑛=1
∞  iterative process. 

 

Case 3: Let 𝑡 < 𝑥1 = 𝑠1 < 𝑘. Suppose that ℘(𝑥1) ≠ 𝑥1. If ℘(𝑥1) < 𝑥1, then by Lemma 3.4 in 

[17] we get that {𝑠𝑛}𝑛=1
∞  iterative process is non-increasing with limit 𝑞. This implies that 𝑞 ≤ 𝑠𝑛 

for all 𝑛 ≥ 1. From Lemma 4 and Lemma 3, we obtain 𝑞 ≤ 𝑥𝑛 ≤ 𝑠𝑛. That is, 
 

0 ≤ |𝑥𝑛 − 𝑞| ≤ |𝑠𝑛 − 𝑞| 
 

it follows that {𝑥𝑛}𝑛=1
∞  iterative process converges to 𝑞 ∈ 𝐹(℘) faster than {𝑠𝑛}𝑛=1

∞  iterative 

process. 

Assume that ℘(𝑥1) > 𝑥1, then by Lemma 3.4 in [17] we get that {𝑠𝑛}𝑛=1
∞  iterative process is 

non-decraisng with limit 𝑞. This implies that 𝑠𝑛 ≤ 𝑞 for all 𝑛 ≥ 1. From Lemma 4 and Lemma 3, 

we obtain 𝑠𝑛 ≤ 𝑥𝑛 ≤ 𝑞. That is, 
 

0 ≤ |𝑥𝑛 − 𝑞| ≤ |𝑠𝑛 − 𝑞| 
 

it follows that {𝑥𝑛}𝑛=1
∞  itartive process converges to 𝑞 ∈ 𝐹(℘) faster than {𝑠𝑛}𝑛=1

∞  iterative 

process.  
 

Example 1 [15] Let ℘: [0,4] → [0,4] defined by ℘(x) =
x2+2√x+5

8
. Then, it is clear that the 

function ℘ is continuous and nondecreasing with the fixed point q = 1. In the following tables, 

the comparison of the convergences for the Picard-S, P, Noor, SP, Mann, Ishikawa, S, KY, 

KDGE  and Picard-Mann iterative processes are given with the initial value x1 = y1 = z1 =

w1 = v1 = s1 = k1 = m1 = t1 = l1 = 3 and the sequences αn = βn = γn =
1

n2+1
 and an = bn =

1

n+1
. we see that Picard-S iteration process converges to q = 1 faster than the others. 

 

Table 1. Comparison rate of convergence among some iteration methods  
 

 𝑥𝑛   Picard   Picard-S  𝑥𝑛 −℘(𝑥𝑛)  KY  

𝑥1   3   3   3   3  

𝑥2   1,743193394231300    1,493320921813210   0,816987298107781    1,680131487141580   

𝑥3   1,284893693492310    1,080486065149830    0,284066223114702    1,436450705945190   

… … … … … 

𝑥20   1,000000039283770   1,000000000000000    0,000000000000009    1,108877680153870   

𝑥21   1,000000014705910   1,000000000000000    0,000000000000001    1,105276143812450   

𝑥22   1,000000005506100    1,000000000000000   0,000000000000000    1,101969996245930   

 … … … … 

𝑥37   1,000000000000000   1,000000000000000    0,000000000000000   1,072000399357590  

… … … … … 

𝑥2000   1,000000000000000   1,000000000000000   0,000000000000000   1,005785688451760  
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Table 1 shows that Picard-S iteration reaches the fixed point at the 20 𝑡ℎ step while Picard 

iterative method reach 37 𝑡ℎstep. Also, KY iterative method can not reach to fixed point when we 

took it to 2000th step. 

 

Table 2. Comparison rate of convergence among some iteration methods 
 

   𝑥𝑛   KDGE   SP   𝑁𝑜𝑜𝑟   S  

𝑥1   3   3   3   3  

𝑥2   1,680131487141580   1,924334468850340   2,377606159933700    2,024977377181080   

… … … … … 

𝑥38   1,007950056477930    1,356067810399450    2,018874358352420   1,000000000000000   

… … … … … 

𝑥2000   1,000051985649190   1,339494412884360   2,004720715565150   1,000000000000000  

 

Table 2 shows that S iteration reaches the fixed point at the 38 𝑡ℎ step while KDGE, SP and Noor 

iterative methods can not reach to fixed point when we took to the values in 2000th step. 

 

Table 3. Comparison rate of convergence among some iteration methods 
 

 𝑥𝑛   Picard-Mann   Ishikawa   Mann  

𝑥1   3   3   3  

𝑥2   1,866942052469940   2,433471026234970    2,433471026234970  

… … … … 

𝑥37   1,000000000000000  2,066367297691530   2,220142312185830  

… … … … 

𝑥2000   1,000000000000000  2,051282598845450   2,203449635776570  

 

Table 3 shows that Picard-Mann iteration reaches fixed point at the 37 𝑡ℎ step while Ishikawa 

and Mann iterative methods can not reach to fixed point when we took to the values in 2000th 

step. 

The following figures are graphical presentations of the above results. 

 

 
 

Figure 1. Comparison the rate of convergence of the iterative schemes 
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Figure 2. Comparison of the variation between the successive steps of the iteration methods 

 

Example 2 Let ℘: [0,4] → [0,4] defined by ℘(x) =
x2−√x+5

5
. Then, it is clear that the function ℘ 

is continuous and nondecreasing with the fixed point q = 1. In Table 1, the comparison of the 

convergences for the Picard-S, P, Noor, SP, Mann, Ishikawa, S, KY, KDGE  and Picard-Mann 

iterative processes are given with the initial value x1 = y1 = z1 = w1 = v1 = s1 = k1 = m1 =

t1 = l1 = 3 and the sequences αn = βn = γn =
1

n2+1
 and an = bn =

1

n+1
. we see that Picard-S 

iteration process converges to q = 1 faster than the others.  

 

Table 4. Comparison rate of convergence among some iteration methods   
 

 𝑥𝑛   Picard   Picard-S  𝑥𝑛 −℘(𝑥𝑛)  KY  

𝑥1   3   3   3   3  

𝑥2   2,018390920190360    1,759136735931020   0,546410161513776    1,957979323347730   

𝑥3   1,448279406433830    1,129285550067650    0,405489229060364    1,635704266021610  

… … … … … 

𝑥17   1,000000088521140   1,000000000000000    0,000000000000029    1,170683966268190   

𝑥18   1,000000026483730   1,000000000000000    0,000000000000003    1,163443203639200   

𝑥19   1,000000007925880    1,000000000000000   0,000000000000000    1,156912923643230   

… … … … … 

𝑥31   1,000000000000000   1,000000000000000    0,000000000000000   1,109326153000230  

… … … … … 

𝑥2000   1,000000000000000   1,000000000000000   0,000000000000000   1,005819415489230  

 

Table 4 shows that Picard-S iteration reaches the fixed point at the 17 𝑡ℎ step while Picard 

iterative method reach 31 𝑡ℎstep. Also, KY iterative method can not reach to fixed point when we 

took it to 2000th step. 
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Table 5. Comparison rate of convergence among some iteration methods 
 

 𝑥𝑛   KDGE   SP   𝑁𝑜𝑜𝑟   S  

𝑥1   3   3   3   3  

𝑥2   1,957979323347730   2,160884172310030   2,504245993858570   2,305205874625330   

… … … … … 

𝑥32   1,011245858126640    1,483936011677190    2,171848713776710   1,000000000000000   

… … … … … 

𝑥2000   1,000031094935700   1,456784715385330   2,155013135026180   1,000000000000000  

 

Table 5 shows that S iteration reaches the fixed point at the 32 𝑡ℎ step while KDGE, SP and 

Noor iterative methods can not reach to fixed point when we took to the values in 2000th step. 

 

Table 6. Comparison rate of convergence among some iteration methods   
 

 𝑥𝑛   Picard-Mann   Ishikawa   Mann  

𝑥1   3   3   3  

𝑥2   2,156821910764440   2,578410955382220    2,726794919243110  

… … … … 

𝑥32   1,000000000000000   2,244732325255310   2,417811816780250  

… … … … 

𝑥2000   1,000000000000000   2,227456768974440   2,399780047518960  

 

Table 3 shows that Picard-Mann iteration reaches fixed point at the 32 𝑡ℎ step while Ishikawa 

and Mann iterative methods can not reach to fixed point when we took to the values in 2000th 

step.. 

The following figures are graphical presentations of the above results:   

 

 
 

Figure 3. Comparison the rate of convergence of the iterative schemes 
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Figure 4. Comparison of the variation between the successive steps of the iteration methods 
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