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ABSTRACT 

 

This paper deals with the statistical inference for the geometric process (GP), in which the time until the 

occurrence of the first event is assumed to follow inverse Rayleigh distribution. The maximum likelihood 

(ML) method is used to derive the estimators of the parameters in GP. Asymptotic distributions of the ML 

estimators are obtained which help us to construct confidence intervals for the parameters and show the 
consistency of these estimators. The performances of the ML estimators are also compared with the 

corresponding non-parametric modified moment estimators in terms of bias, mean squared error and Pitman 

nearness probability through an extensive simulation study. Finally, a real data set is provided to illustrate the 
results.  

Keywords: Geometric process, inverse Rayleigh distribution, maximum likelihood estimator, modified 

moment estimator, asymptotic normality. 
 

 

1. INTRODUCTION 

 

In statistical analysis of a data set which consists of the successive inter-arrival time from a 

series of events, a counting process is the most commonly used method for analyzing data from 

this type of study. If the data set is independent and identically distributed and has no trend, a 

renewal process (RP) or homogeneous Poisson process can be used for modeling the data. If the 

data set exhibits a trend, an inhomogeneous Poisson process can be applied as a possible approach 

for modeling this trend (see [1, 2]). However, a more direct approach to model the data with a 

monotone trend is to apply a stochastically monotone process. The geometric process (GP) as a 

simple monotone process was first introduced by [3, 4] and defined as follows. 
 

Definition 1. Let 
iX  denote the inter-arrival time between the ( 1)i  th and i th events of a 

counting process  ( ), 0N t t   for 1,2,...i  . A stochastic process  , 1,2,...iX i   is said to be a 

GP, if there exists a real 0a   such that the random variables 1i

i iY a X , 1,2,...i   are 

independent and identically distributed (iid) with the distribution function F .  The number a   is 

called the ratio parameter of the GP. 
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It can be easil y seen that a GP with ratio a  is stochastically decreasing if 1a  , and 

stochastically increasing if 0 1a  . When 1a  , the GP will be reduced to a RP [4]. 

Furthermore, given a GP with ratio a , then it can easily be shown that 
 

1
( )i i

E X
a




  and 
2

2 2
( )i i

Var X
a




                                                                         (1) 

 

where    and 
2   are the expectation and variance of the first inter-arrival time

1X , 

respectively.  

The GP has been applied to the maintenance problem by [4–7]. The basic properties of GP 

has been studied by several authors, for example:  [7–9]. Additionally, the statistical inference 

results for the GP have been recently presented by assuming that the random variable 
1X  follows 

specific distributions such as lognormal distribution [10], gamma distribution [11], Weibull 

distribution [12], the inverse Gaussian distribution [13], Power Lindley distribution [14] and 

Rayleigh distribution [15].  

In this study, we assume that the distribution of the first inter-arrival time 
1X  in GP follows 

an inverse Rayleigh (IR) distribution with parameter  . Therefore; the main purpose of this study 

is to consider the problem of statistical inference for GP with the IR distribution for 
1X , and  

correspondingly, to obtain the estimators of the parameters a  and   by using the parametric 

estimation method including maximum likelihood method. 

The remainder of this paper is organized as follows: The IR distribution is briefly introduced 

in Section 2. In the next section, the maximum likelihood (ML) estimators are derived for the 

unknown parameters along with their asymptotic confidence intervals. In Section 4, the modified 

moment (MM) estimators are given by using the nonparametric method proposed by [5]. Section 

5 presents the results of a Monte Carlo simulation study that compare the performance of the 

derived ML estimators with the corresponding MM estimators. A real data set is analyzed in 

Section 6, followed by conclusions in Section 7. 

 

2. INVERSE RAYLEIGH DISTRIBUTION 

 

Let the distribution of first occurrence time 
1X  in GP has an IR distribution, which was 

originally proposed by [16], with the following probability density function (pdf) and the 

cumulative distribution function (cdf), respectively 
 

3 2

2
( ; ) exp , 0, 0f x x

x x

 
 

 
    

 
,                                                               (2) 

 

2
( ; ) exp , 0F x x

x




 
   

 
,                                                                            (3) 

 

where   is the scale parameter. The mean of the IR distribution is given as  
 

  .                                                                                             (4) 
 

The IR distribution has many applications in the area of reliability and the life testing studies 

including infant mortality, useful life and wear-out periods since the hazard rate function of the IR 

distribution can be increasing or decreasing depending on   [17–19]. The IR distribution also has 

a unimodal pdf and is a member of the exponential family. For further details about the IR 

distribution, the readers can refer to [19].   
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3. MAXIMUM LIKELI HOOD ESTIMATION OF PARAMETERS OF GP WITH 

INVERSE RAYLEIGH DISTRIBUTION 

 

In this section, the ML estimation method is used to obtain the estimators of the parameters of 

GP, where a  and   are the ratio parameter of GP and the scale parameter of IR distribution, 

respectively. Besides, the approximate confidence intervals of the parameters based on the 

asymptotic distributions of the ML estimators are derived. 

Let 
1 2( , ,..., )nX X X X  denote a random sample of size n  drawn from the GP with ratio a  

and 
1X which follows the IR distribution with the pdf given in Equation (2). For , 1,2,iX i  , 

the likelihood function can be written as   
 

  ( 1) 3 2 2 2

11 1

( , ; ) ( ; , ) 2 exp
n n n

n n n i

i i i

ii i

L a x f x a a x a x       

 

 
   

 
                               (5) 

 

The log-likelihood can be obtained by taking the natural logarithm of Equation (5) as 
 

2 2 2

1 1

( , ) ln ( , ; ) ln2 ln ( 1)ln 3 ln
n n

i

i i

i i

l a L a x n n n n a x a x     

 

                              (6) 

 

After taking the first partial derivatives of ( , )l a   with respect to a  and  , and equating 

them to zero, the likelihood equations for the parameters a  and   are obtained as follows 
 

1 2 2

1

( , ) ( 1)
(2 2 ) 0

n
i

i

i

l a n n
i a x

a a


  


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 ,                                                         (7) 
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 

 




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Then, by solving Equations (7)–(8), the parameter   is obtained as 
 

2 2 2

1

n
i

i

i

n

a x


 






.                                                                                     (9) 

 

Substituting the Equation (9) into Equation (8), the ML estimator of the parameter a  ( ˆ
MLEa ) 

is obtained by solving the following equation  
 

2 2 2 2

1 1

2 ( 1)
n n

i i

i i

i i

ia x n a x   

 

   .                                                                    (10) 

 

It is obvious that an explicit form of the solution of Equation (10) does not exist, and hence 

numerical methods, such as the Newton–Raphson, are required to compute the estimator ˆ
MLEa .  

Then, the ML estimator of the parameter   ( ˆ
MLE ) is obtained using the numerical solution of  

ˆ
MLEa  as follows 

 

2 2 2

1

ˆ

ˆ
MLE n

i

MLE i

i
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a X


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.                                                                                  (11) 
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Let  ,
T

a   be the unknown parameter vector. Then, according to the large-sample 

theory, the asymptotic distribution of the ML estimator of  , denoted as  ˆˆ ˆ ,
T

MLE MLE MLEa  , 

is  
 

1ˆ( ) (0, ( ))MLE N I    ,                                                                      (12) 
 

where “  ” denotes approximately distributed when n  is large [20]. Here, 
1( )I 

 is the 

inverse of the Fisher information matrix ( )I  which is defined by 
 

2 2

2

2 2

2

( , ) ( , )

( )
( , ) ( , )

l a l a

a a
I E

l a l a

a

 




 

 

  
  

   
  
  

   

,                                                            (13) 

 

where  
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i
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i
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( , )l a n

 


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
.                                                                                   (16) 

 

Let 2 2 2i

i iY a X  , 1,2,...,i n ,  which can be written as 1 1/2i

i iX a Y  , then we have 
 

1 1/2( ) ( ) exp( ), 0i i
i i i i

i

dx
g y f x a y y y

dw
       . 

 

Therefore, each iY , 1,2,...,i n  has an exponential distribution with the parameter   and 

( ) 1/iE W  , 1,2,...,i n . By using this result, the expected values of the second derivatives 

given in Equations (14)-(16) are obtained as 
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2

2 2 2

( , )l a n n
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  

   
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Substituting Equations (17)-(19) into Equation (13), the inverse of the Fisher information 

matrix, 
1( )I 

, is derived as follows 
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By using the asymptotic normality of ˆ
MLE , and the estimated variances, thus, the 

approximate (1 )100%  confidence intervals for a  and  are derived, respectively, as 
 

 
2

/2 3

ˆ3
ˆ MLE

MLE

a
a z

n
  and 

 
2

/2

ˆ4
ˆ MLE

MLE z
n




  ,                                               (21) 

 

where / 2z  is the percentile of the standard normal distribution with right-tail / 2 .  

Furthermore, it is to be noted that both the estimators ˆ
MLEa  and ˆ

MLE  are asymptotically 

unbiased and consistent, since the asymptotic variance of each of ˆ
MLEa  and ˆ

MLE  converges to 

zero as n  goes to infinity. 

 

4. MODIFIED MOMENT ESTIMATION OF PARAMETERS OF GP WITH INVERSE 

RAYLEIGH DISTRIBUTION 

 

In this section, the MM estimator of the parameter  , ˆ
MME , is obtained by using the 

nonparametric estimate of the ratio parameter a , a commonly used method for GP. Lam [5] 

derived a nonparametric estimator for the ratio parameter a  as the following 
 

1

6
ˆ exp ( 2 1)ln

( 1) ( 1)

n

NP i

i

a n i X
n n n 

 
   

  
  .                                                (22) 

 

The estimator ˆ
NPa  is both an unbiased and a consistent estimator of the ratio parameter a . It 

is also asymptotically normally distributed. Furthermore, Lam [5] proposed a nonparametric 

estimator for 
iY , 1,2,i   based on ˆ

NPa  as 
 

1ˆ ˆ i

i NP iY a X , 1,2,i                                                                                    (23) 
 

Thus, for the sample 
1 2, ,..., nX X X  drawn from the GP with ratio a  and 

1X  which follows 

the IR distribution, the first sample moment, say 
1m , is computed as follows 

 

1

1

1 1

1 1ˆ ˆ
n n

i

i NP i

i i

m Y a X
n n



 

   .                                                                           (24) 

 

In addition to these, the first population moment of the IR distribution given in Equation (4) 

can be expressed as  
 

1  .                                                                                           (25) 
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Then, equating the first population moment given by Equation (25) with the corresponding 

sample moment given in Equation (24), the MM estimator of the parameter  , ˆ
MME , is obtained 

as follows 
 

2

1

2
1

1ˆ ˆ
n

i

MME NP i

i

a X
n








 
  

 
 .                                                                           (26) 

 

5. SIMULATION STUDY  

 

In this section, a Monte Carlo simulation study is conducted to compare the performances of 

the ML and the MM estimators for the parameters a  and  .  The simulation is carried out for 

different sample sizes 25, 50, 100n  . For each case, the parameter   is taken as 0.5, 1, 2  and 

also the ratio parameter a  is chosen as 0.9,0.95,1.05  and 1.1 . For 5000 repetitions, the 

performances of the ML and  MM estimators are measured with different criteria such as bias, 

mean square error (MSE) and Pitman nearness (PN) probability (see [21, 22]),  given as follows:  
 

5000

1

1
ˆ( )
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i

i

Bias  


  ,                                                                           (27) 
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2

1

1
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i

i

MSE  


  ,                                                                           (28) 

 

   
1

ˆ ˆ ˆ ˆ#
5000

i j i jPN P                ,                                         (29) 

 

where ˆˆ ˆ( , )i i ia   is the estimate of ( , )a   for the thi  simulated sample. It can be said 

that if 50 (%)PN  , ˆ
i  outperforms ˆ

j  with regard to PN criteria.  

The simulation results are reported in Tables 1–3, show the mean, bias and MSE values for 

the ML and  MM estimators of a  and  . Tables 1–3 also exhibit the PN probability values (as 

percentages) of the considered estimators relative to each other. 
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Table 1. The Means, Biases, MSEs and PN probability values (%) of the estimators of 𝑎 and 𝜃 

when 𝜃 = 0.5 
 

   𝑎̂ 𝜃̂ 

𝒂 𝒏 Method Mean Bias MSE PN Mean Bias MSE PN 

0.9 

25 
MME 0.89930 -0.000699 0.000253 38.1 0.56685 0.06685 0.41882 34.2 

MLE 0.89951 -0.000494 0.000166 61.9 0.55521 0.05521 0.05845 65.8 

50 
MME 0.89976 -0.000241 0.000034 36.5 0.54083 0.04083 0.15608 31.7 

MLE 0.89977 -0.000230 0.000020 63.5 0.52659 0.02659 0.02413 68.3 

100 
MME 0.90008 0.000084 0.000004 37.7 0.52771 0.02771 0.14864 31.6 

MLE 0.90009 0.000086 0.000002 62.3 0.51829 0.01829 0.01082 68.4 

0.95 

25 
MME 0.95005 0.000053 0.000266 39.6 0.57451 0.07451 0.50296 32.3 

MLE 0.94993 -0.000069 0.000177 60.4 0.56046 0.06046 0.06259 67.7 

50 
MME 0.95005 0.000046 0.000035 39 0.54995 0.04995 0.39360 30.1 

MLE 0.94995 -0.000050 0.000022 61 0.52962 0.02962 0.02425 69.9 

100 
MME 0.94994 -0.000058 0.000004 39.1 0.52191 0.02191 0.06525 31.2 

MLE 0.94995 -0.000054 0.000003 60.9 0.51364 0.01364 0.01074 68.8 

1.05 

25 
MME 1.05055 0.000547 0.000341 38.3 0.58226 0.08226 0.60377 34.2 

MLE 1.05098 0.000976 0.000221 61.7 0.57871 0.07871 0.06810 65.8 

50 
MME 1.05017 0.000168 0.000042 37.5 0.52858 0.02858 0.10166 34.3 

MLE 1.05015 0.000152 0.000028 62.5 0.53764 0.03764 0.02910 65.7 

100 
MME 1.05001 0.000007 0.000005 37.5 0.51258 0.01258 0.04412 31.8 

MLE 1.05005 0.000055 0.000003 62.5 0.51707 0.01707 0.01017 68.2 

1.1 

25 
MME 1.10115 0.001153 0.000392 37.2 0.56654 0.06654 0.31695 33.7 

MLE 1.10114 0.001138 0.000231 62.8 0.57251 0.07251 0.06648 66.3 

50 
MME 1.09969 -0.000312 0.000045 40.7 0.53768 0.03768 0.16650 30.9 

MLE 1.09966 -0.000339 0.000029 59.3 0.52055 0.02055 0.02260 69.1 

100 
MME 1.10005 0.000050 0.000006 36.3 0.53445 0.03445 0.14462 32.5 

MLE 1.10003 0.000031 0.000004 63.7 0.51818 0.01818 0.01126 67.5 
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Table 2. The Means, Biases, MSEs and PN probability values (%) of the estimators of 𝑎 and 𝜃 

when 𝜃 = 1 
 

   𝑎̂ 𝜃̂ 

𝒂 𝒏 Method Mean Bias MSE PN Mean Bias MSE PN 

0.9 

25 
MME 0.90007 0.000188 0.000244 40.5 1.06817 0.06817 0.50546 33.4 

MLE 0.90012 0.000119 0.000169 59.5 1.13926 0.13926 0.28231 66.6 

50 
MME 0.90019 0.000074 0.000031 36.8 1.03470 0.03470 0.29616 32.6 

MLE 0.90008 0.000081 0.000019 63.2 1.05209 0.05209 0.09832 67.4 

100 
MME 0.89997 -0.000031 0.000004 39.2 1.02428 0.02428 0.16582 32.7 

MLE 0.90002 0.000018 0.000003 60.8 1.03465 0.03465 0.05092 67.3 

0.95 

25 
MME 0.95034 0.000344 0.000293 39.8 1.07654 0.07654 0.53803 31.2 

MLE 0.94996 -0.000037 0.000194 60.2 1.12849 0.12849 0.26840 68.8 

50 
MME 0.95025 0.000248 0.000033 42.5 1.05607 0.05607 0.34766 33 

MLE 0.95018 0.000078 0.000024 57.5 1.08136 0.08136 0.12356 67 

100 
MME 0.95004 0.000043 0.000005 37.6 1.02694 0.02694 0.18809 31.1 

MLE 0.95005 0.000049 0.000003 62.4 1.03508 0.03508 0.04650 68.9 

1.05 

25 
MME 1.05014 0.000239 0.000339 37.5 1.03673 0.03673 0.49214 34.3 

MLE 1.04972 -0.000276 0.000216 62.5 1.11628 0.11628 0.24426 65.7 

50 
MME 1.05024 0.000139 0.000044 39.3 1.03458 0.03458 0.29624 35.2 

MLE 1.05027 0.000272 0.000029 60.7 1.07438 0.07438 0.10682 64.8 

100 
MME 1.04994 -0.000061 0.000005 41.2 1.00889 0.00889 0.15609 31 

MLE 1.04998 -0.000016 0.000003 58.8 1.03265 0.03265 0.04454 69 

1.1 

25 
MME 1.09922 -0.000779 0.000396 39.5 1.03600 0.03600 0.47973 34.3 

MLE 1.09959 -0.000423 0.000277 60.5 1.11383 0.11383 0.26804 65.7 

50 
MME 1.09954 -0.000465 0.000048 36.3 1.01263 0.01263 0.23140 33.9 

MLE 1.09958 -0.000410 0.000031 63.7 1.04994 0.04994 0.10501 66.1 

100 
MME 1.10003 0.000026 0.000006 39.8 1.01557 0.01157 0.16768 28.1 

MLE 1.09999 -0.000014 0.000004 60.2 1.02811 0.02811 0.04590 71.9 
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Table 3. The Means, Biases, MSEs and PN probability values (%) of the estimators of 𝑎 and 𝜃 

when 𝜃 = 1.5 
 

   𝑎̂ 𝜃̂ 

𝒂 𝒏 Method Mean Bias MSE PN Mean Bias MSE PN 

0.9 

25 
MME 0.89941 -0.000588 0.000259 38.8 1.55692 0.05692 1.11640 34.7 

MLE 0.89955 -0.000452 0.000174 61.2 1.67207 0.17207 0.55901 65.3 

50 
MME 0.89981 -0.000187 0.000032 37.9 1.55547 0.05547 0.67215 30.7 

MLE 0.89976 -0.000242 0.000020 62.1 1.56610 0.06610 0.20384 69.3 

100 
MME 0.90003 0.000027 0.000004 38.4 1.53229 0.03229 0.39064 29.2 

MLE 0.90002 0.000024 0.000003 61.6 1.54648 0.04648 0.10606 70.8 

0.95 

25 
MME 0.94916 -0.000842 0.000261 38.7 1.54171 0.07215 0.96315 34.2 

MLE 0.94961 -0.000387 0.000176 61.3 1.67757 0.17757 0.53421 65.8 

50 
MME 0.95001 -0.000092 0.000037 38.4 1.57215 0.04171 0.74136 33.4 

MLE 0.94981 -0.000189 0.000023 61.6 1.58312 0.08312 0.23115 66.6 

100 
MME 0.94991 0.000009 0.000004 38.5 1.53622 0.03622 0.44856 31 

MLE 0.94991 -0.000087 0.000003 61.5 1.53408 0.03408 0.09914 69 

1.05 

25 
MME 1.05058 0.000582 0.000289 39.4 1.58607 0.08607 1.04389 32.1 

MLE 1.05041 0.000406 0.000208 60.6 1.71391 0.21391 0.58859 67.9 

50 
MME 1.05010 0.000098 0.000046 38.3 1.54697 0.04697 0.63773 30.7 

MLE 1.04991 -0.000113 0.000028 61.7 1.56918 0.06918 0.20557 69.3 

100 
MME 1.04988 -0.000092 0.000006 36 1.55786 0.05786 0.52408 30.2 

MLE 1.04989 -0.000095 0.000003 64 1.53035 0.03035 0.09654 69.8 

1.1 

25 
MME 1.10001 0.000115 0.000371 40.1 1.53964 0.09706 1.03460 33.5 

MLE 1.10055 0.000555 0.000256 59.9 1.69172 0.19172 0.52160 66.5 

50 
MME 1.10011 0.000112 0.000049 38 1.59706 0.06145 0.89679 31.5 

MLE 1.09996 -0.000042 0.000031 62 1.59264 0.09264 0.24326 68.5 

100 
MME 1.10012 0.000009 0.000006 38.3 1.56145 0.03964 0.40444 32 

MLE 1.10013 0.000127 0.000004 61.7 1.56092 0.06092 0.10523 68 

 

Some of the points are quite clear from Tables 1-3.  First of all, as the sample size n  

increases, both the bias and MSE values decrease for all estimators of a  and  . In fact, we were 

expecting to see this result because the estimators are asymptotically unbiased and consistent. It is 

also observed that the ML estimators of a  and   outperform the corresponding MM estimators 

in terms of MSE for all the cases. On the other hand, according to PN probability, the ML 

estimators show better performance than the MM estimators in all the cases.   

 

6. APPLICATION TO A REAL DATA SET 

 

In order to verify how the estimators considered in this study work in a real-life context, a real 

data set is investigated in this section. The dataset consists of 29 software error times which are 

taken from Xu [23]. It was also studied by [24].  

The software data set is here analyzed from the point of view of the GP with ratio a  and 
1X  

which follows the IR distribution. Therefore, we first investigate whether the underlying 

distribution of the data set is the IR distribution. In order to test whether the IR distribution is 

consistent with the data set, it follows from definition 1 that  1i

i iY a X , 1,2,i  ., where 
iY ’s 

follow the IR distribution. Then, it can be expressed as ln ( 1)ln lni iY i a X   , 1,2,i  , by 

Statistical Inference for Geometric Process with   …      /   Sigma J Eng & Nat Sci 37 (3), 871-882, 2019 



880 

 

taking the natural logarithm of 
iY . Here, it is known that ln iY ’s are iid random variables with the 

log-IR distribution. Thus, a simple linear regression model can be written as 
 

ln ( 1)lni iX i a     ,  1,2,i  ,                                                                   (30) 
 

where  ln iE Y   and exp( )i  follows the IR distribution. If the distribution of the 

exponential error terms is IR, then it is said that the underlying distribution of the data set is IR. In 

this case, the error terms can be estimated as the following 
 

ˆˆ ˆln ( 1)lni i NPX i a     ,  1,2,i  ,                                                             (31) 
 

where  
1

2ˆ (2 3 2)ln
( 1)

n

i

i

n i X
n n




  

  and ˆ

NPa  is given in (22).  

In order to analyze whether the exponential residuals, ˆexp( )i , follow the IR distribution, a 

QQ-plot is created first. This plot is depicted in Figure 1. It is seen from Figure 1 that the data 

points do not diverge much from a straight line. Hence, it can be concluded that the underlying 

distribution of this software data is consistent with the IR distribution. This result is also 

supported by using the Kolmogorov–Smirnov test ( 0.2248KS   and the corresponding p 

value 0.09 ), a well-known goodness of fit test.  

 

 
 

Figure 1. Q-Q plot for the software data set. 

 

When the software data set is modeled by using a GP with the IR distribution, the estimates of 

the parameters a  and   obtained by using the ML and MM estimators are reported in Table 4. 

The standard errors of the estimators are given in parentheses in Table 4. 
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Table 4. Estimation of parameters for the software data set. 
 

Method 𝒂̂ 𝜽̂ 

MME 
0.9654 

(0.0198) 

1.3772 

(0.9663) 

MLE 
0,9672 

(0.0107) 

1,0212 

(0.3793) 

 

Based on the simulation results presented in Table 2, it can be concluded that for the software 

data set, the ML estimates of the parameters are preferable to the MM estimates in terms of the 

MSE and PN probability criteria, since the ML estimators show better performance than the MM 

estimators according to MSE and PN probability when the ratio parameter a  is less than 1. 

 

8. CONCLUSIONS  

 

In this paper, we study the statistical inference problem for the geometric process (GP) when 

the distribution of the first occurrence time is assumed to be an inverse Rayleigh (IR). The 

maximum likelihood (ML) estimators are derived for the shape parameter   of IR distribution 

and the ratio parameter a  of GP along with their asymptotic confidence intervals. Additionally, 

the modified moment (MM) estimator for   is obtained by using a nonparametric estimator of a

, derived by Lam [5]. The performances of the ML estimators are compared with the 

corresponding MM estimators through an extensive simulation study. From the simulation results, 

it is observed that the ML estimators outperform the MM estimators in terms of the MSE and 

Pitman nearness probability criteria for all of the cases. Finally, a real data set is provided to 

illustrate the results. 
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