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ABSTRACT 
 

 

In this paper we introduce and study some properties of the new sequence space of order   which is defined 

using almost convergence and the modulus function. Further, some connections between strong (( , , ))V B f M



- almost summability of sequences and  strong almost convergence of order   with respect to a 

modulus are studied.  
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1. INTRODUCTION AND BACKGROUND 
 

Let s  denote the set of all real and complex sequences )( kxx  . By l  and c , we 

denote the Banach spaces of bounded and convergent sequences )( kxx   normed by 

||sup|||| nn xx  , respectively. A linear functional   on l  is said to be a Banach limit if it 

has the following properties: 
 

1) 0)( x  if 0n  (i.e. 0nx  for all n ), 

2) 1)( e  where ),1,1( e , 

3) ( ) ( )Dx x  , where the shift operator D  is defined by }{)( 1 nn xxD . 
 

Let B  be the set of all Banach limits on l . A sequence x  is said to be almost 

convergent if all of its Banach limits coincide. Let ĉ  denote the space of almost convergent 

sequences . 

Lorentz [4] has shown that  
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Maddox [5]introduced the space ]ˆ[c  of strongly almost convergent sequence as follows:  

 . somefor  ,in uniformly  ,0|)(|lim:]ˆ[ , LnLxtlxc nm
m
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Let )( i   be a non-decreasing sequence of positive numbers tending to   such that  
 

.1,1 11   ii  
 

The collection of such sequence   will be denoted by .   

The generalized de la Valée-Poussin mean is defined by  
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where ],1[ iiI ii   . A sequence )( kxx   is said to be ),( V -summable to a 

number L , if  iLxTi  as )(  (see [7]). 

The space ],[ V  of  -strongly convergent sequences was introduced by Malkowsky and 

Savaş [7] as follows: 
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Note that in the special case where ii  , the space ],[ V  reduces the space w  of 

strongly Cesàro summable sequences which is defined by  
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More results on  -strong convergence can be seen from [8, 12, 13, 14,15]. 

Following Ruckle [10], a modulus function M  is a function from ),0[   to ),0[   such 

that 
 

(i) 0)( xM  if and only if 0x , 

(ii) )()()( yMxMyxM   for all 0, yx , 

(iii) M  increasing, 

(iv) M  is continuous from the right at zero. 
 

Maddox [6] introduced and examined some properties of the sequence spaces )(0 Mw , 

)(Mw  and )(Mw  defined using a modulus M , which generalized the well-known spaces 

0w , w  and w  of strongly summable sequences.  
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In 1999, E. Savas [11] defined the class of sequences, which are strongly almost Cesàro 

summable with respect to modulus, as follows: 
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where )( kpp   is a sequence of strictly positive real numbers and M  be a modulus. 

Waszak [16] defined the lacunary strong ),( fA convergence with respect to a modulus 

function. 

If )( kxx   is a sequence and )( nkbB   is an infinite matrix, then Bx  is the sequence 

whose  nth  term is given by knkkn xbxB 

0)( . Thus we say that x  is B -summable to 

L  if LxBnn  )(lim . Let X  and Y  be two sequence spaces and )( nkbB   an 

infinite matrix. If for each Xx  the series knkkn xbxB 

0)(  converges for each n  and 

the sequence YxBBx n  )(  we say that B  maps X  into Y . By ),( YX  we denote the 

set of all matrices which maps X  into Y , and in addition if the limit is preserved then we 

denote the class of such matrices by regYX ),( . 

Let )( nkbB   be a nonnegative regular matrix summability method. Connor [3] further 

extended Maddox's results by giving the following definition:  
 

Definition 1.1. Let M  be a modulus and B  be a nonnegative regular summability method. We 

let 
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Later on Nuray and Savas [9] extended Connor's results by using almost convergence as 

follows: 
 

Definition 1.2. Let M  be a modulus and B  be a nonnegative regular summability method. We 

let 
 

1
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By a f -function we understand a continuous non-decreasing function )(uf  defined for 

0u  and such that 0)(,0)0(  uff  ,for 0u  and )(uf  as u , 

(see, [16] ). 

A function f  is said to satisfy )( 2 -condition,(for all large u ) if there exists constant 

1K  such that )()2( uKfuf  . 

In the this paper, we introduce and study some properties of the almost convergence sequence 

space of order   which is establish using the modulus and infinite matrix and hence as special 

cases, some known results are also obtained . 

 

2. MAIN RESULTS 

 

Let )( j  be same as above, f  be given f -function and M  be given modulus 

function, respectively. Moreover, let )( nkbB   be the real matrix and 10    be given. 

Then we write, 
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 , the sequence x  is said to be  -strong ),( fB -almost convergent 

of order    to zero with respect to a modulus M . 

If ,jj   we have 
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If we take  𝑓(𝑥) = 𝑥  for all  x , we write  
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If we take IB   and xxf )(  respectively, then we have  
 

0

1ˆ ( , ) ( ) : lim 0,  uniformly in .( )
j

k k m
j

k Ij

V I M x x M x m

 




 
 

   
  

  

 

If we take IB  , xxf )(  and xxM )(  respectively, then we have  
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1ˆ ( ) ( ) : lim | | 0,uniformly in 
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which was defined and studied by Savaş and Savaş [11]. 

If we define the matrix )( nkbB   as follows: 
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then we have,  
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We now have 
 

Theorem 2.1. Let the f -function )(uf  satisfies the condition )( 2  and let the matrix has 

the property  
 

Kbb nn  ...21  
 

for ,...2,1n  Then the following conditions are true.  
 

(a) If ),,,(ˆ)( pMfBVxx k


  and   is an arbitrary number, then 

).,,(ˆ MfBVx 
   

(b) If ),,(ˆ, MfBVyx 
  where )( kxx  , )( kyy   and   ,    are given 

numbers, then ).,,(ˆ MfBVyx 
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Hence, if  𝛾 > 1  then we may find a positive number s such that  𝛾 < 2𝑠  and we obtain 
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where d  and L  are constant connected with the properties of f  and modulus M . Finally 

we prove the condition (a). 
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)(b  In the following let the numbers  ,  and the elements 0),,(ˆ, MfBVyx 
  be 

given. From the part (a) it follows that the following inequality is true  
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where the constant 1L  and 2L  are defined as in (a). Hence ),,(ˆ, MfBVyx 
   

Now we shall prove some inclusion relations 
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By definition of the modulus M  we have 
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Thus we have  )),,((ˆ MfBVx 
 . This completes the proof. 
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Theorem 2.3. Let ,, 1MM  be modulus functions. Then we have  

1 0 1 0
ˆ ˆ( , , ) ( , , )V B M f V B f MoM 

  . 
 

The proof is a routine verification by using standard techniques and hence is omitted. 
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