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ABSTRACT 

 

This paper studies the performance of multistage sequential sampling procedures in chronological order, 

starting from Stein’s two-stage procedure, the one-by-one purely sequential procedure, Hall’s three-stage 

procedure, and the accelerated sequential procedure for estimating the mean of the normal distribution under a 
moderate sample size using Monte Carlo simulation. We also introduce and discuss the performance of a new 

sequential sampling procedure called the progressive procedure that starts with a bulk stage and ends by one-

by-one purely sampling under moderate and large sample sizes (asymptotic) based on Monte Carlo 
simulation. The simulation results show that the new procedure competes with other procedures and attains all 

targeted asymptotic characteristics except the exact consistency property.  

Keywords: Accelerated sequential scheme, asymptotic characteristics of multistage sampling procedures, 
one-by-one procedure, progressive sampling procedure, three-stage procedure, two-stage procedure. 

 

 

1. INTRODUCTION 

 

Multistage sampling procedures were developed over the past few decays to achieve several 

popular characteristics that were lacked in fixed sample size sampling procedures. The idea 

started from Abraham Wald in 1945, who first developed a sequential test during World War II as 

a tool to establish more efficient quality control in equipment inspection. His sequential procedure 

is known as a sequential probability ratio test (SPRT), and the objective was to minimize the cost 

of inspection during the war [1]. Although Wald’s test was devised to treat a particular specific 

problem in testing hypotheses, the idea of multistage sampling came out to inspire researchers to 

device other techniques to perform statistical inference. 

We emphasize that, contrary to the fixed sample size sampling procedure, where the inference 

is made after the sampling phase, in multistage sampling, the inference is made within the 

sampling framework. See also Stein and Wald for confidence interval estimation problem [2].  
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In general, multistage sampling procedures are used in statistical inference when no suitable 

fixed sample size procedure is available, especially when the optimal fixed sample size needed to 

meet certain specific goals depends on unknown nuisance parameters. The word “optimal” refers 

to the minimum fixed sample size needed to satisfy certain criteria had the nuisance parameters 

been known. 

Assume that our objective is to make inference for the population normal mean under some 

optimal criteria. Like minimizing the cost associated with point estimation when we propose to 

estimate the population mean  by the corresponding sample mean
nX ,  2n   or constructing a 

fixed-width confidence interval for  with a prescribed width 2  0d  , where the coverage 

probability exceeds the nominal value 100  1  %, 0 1  .  

Regardless of the type of inference we seek, the optimal sample size required to perform 

inference about the population mean takes the following form, for more details see, Sen [3] and 

Ghosh, Mukhopadhyay, and Sen [4]      
 

 *n g                                                                                                                                      (1) 
 

where  0  is a known constant with the characteristic that as   *n  . Moreover, it 

depends on some predetermined constants, which may, for example, appear in a loss function 

incurred in point estimation of the mean  or arise from consideration of a fixed-width confidence 

interval for the mean  with a prescribed coverage probability. The function  0g  is a real-

valued continuously differentiable function (of a proper order) of the unknown   . For more 

details, see Sen [3] and Ghosh, Mukhopadhyay, and Sen [4]. 

Since *n in (1) is numerically unknown because  is unknown, then no fixed sample size 

procedure provides the above point estimation of  uniformly for 0  . Therefore, we resort 

to multistage procedures to estimate  via estimation of *n .   

Before we state the multistage sampling procedures, we summarize the required optimal 

criteria of an efficient multistage sampling that were developed over the years regarding both 

point and interval estimation. 

Let N  be the final random sample size generated by a multistage sampling procedure, and let 
*n be as in (1). Then a procedure attains first-order asymptotic efficiency if the ratio of the 

expected final sample size required by the multistage procedure to perform inference relative to 

the fixed sample size required to perform inference had  been known, say *n approaches one. 

That is as    * 1E N n  . The procedure is second-order asymptotic efficient if as *n

increases, the quantity  *E N n   remains bounded in the sense of Ghosh and 

Mukhopadhyay [5]. 

Regarding the confidence interval estimation, let NI be the fixed-width confidence interval 

constructed via a multistage procedure. Then the procedure is consistent or exactly consistent if 

  1NP I    , uniformly   and , while it is asymptotically first-order consistent if as,

    1NP I    uniformly    and , in the sense of Stein [6], Mukhopadhyay [7], 

and Chow and Robbins [8]. 

 Additional criteria are required for each specific estimation objective, for example in the case 

of point estimation problem; it is required that the asymptotic regret, ω(n*) which is the 

difference between the expected loss of the multistage sampling from the optimal loss had 
*n

been known should be bounded, that is let NR be the multistage risk encountered in estimating the 
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population mean   by the corresponding sample measure and let *n
R be the optimal fixed sample 

size risk had   been known. Then, the multistage procedure is called first-order asymptotically 

risk efficient if as   * 1N n
R R  , while it is asymptotically second-order risk efficient if as

    *

*

N n
n R R   remains bounded in the sense of Ghosh and Mukhopadhyay [5].  

In addition to the above asymptotic measures, other factors may be used to compare the 

procedures; the practical implementations in real-life problems, the insensitivity to changes in the 

underline distribution and the sensitivity to depict any potential changes in the parameter under 

consideration. 

 

2. MULTISTAGE SAMPLING PROCEDURES FOR ESTIMATING THE POPULATION 

NORMAL MEAN 
 

Let 1 2, ,X X be a sequence of independent and identically distributed random variables from 

a normal distribution with unknown mean   and unknown variance 0  . Based on a fixed 

sample of size  2n  say  1, , nX X we propose 
1

n
i

n

i

X
X

n

 and 
 

2

2

1

( )

1

n
i n

n

i

X X
S

n





 as point 

estimates for  and   respectively.  

Suppose we need to estimate the mean   by a confidence interval such that the width of the 

interval is  2 0d  and    1nP X d     , uniformly for   ,    , where   

0 1and d  are previously known and fixed to the experimenter. If   is known, then this 

fixed-width confidence interval problem has a simple fixed sample size solution given by (1) with 

 g    and  
2

a d  where a  is an upper 2 quantile point of standard normal 

distribtuion  0,1N . The quantity 
2*n a d  is referred to as the optimal fixed sample size 

required constructing a fixed-width confidence interval for  given that   is known.  

Since   is unknown, then *n  is unknown, and it was shown by Dantzig [9] that there is exist 

no fixed sample size procedure which allows us to construct a size  1   confidence interval for 

  with a fixed width 2d . Therefore, we resort to multistage procedures to estimate *n  via 

estimation of  .   

In the following sub-sections, we list in chronological order the multistage procedures as 

shown in the literature.   

 

2.1. Stein’s Two-Stage Procedure 

 

Stein, in 1945, introduced the two-stage sequential procedure to estimate the mean of the 

normal distribution by a confidence interval with assigned width and confidence coefficient [6]. 

Regarding Stein’s two-stage procedure, the sampling starts by taking a pilot sample of size

 2m   from the distribution, and calculate the initial estimates of   and   respectively.  

We define the stopping rule as follows 
 

 1max ,N m N , 
2

1 1mN S                                                                                                  (2) 
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 where  
2

1mt d   and 1mt   is the upper 50 % point of the student t - distribution with 

 1m   degrees of freedom, and  x  is the largest integer less than x . If 1m N  stop sampling 

at this stage, otherwise continue to sample the difference  1N m samples and perform the 

required inference based on N samples.   

Since the publication of Stein’s paper, a large body of research was directed to develop 

multistage techniques to improve the quality of the inference, especially in point and interval 

estimation. Cox, in 1952 generalized Stein’s two-stage procedure to another class of distributions; 

he developed Double-sampling methods for estimating an unknown parameter by a confidence 

interval so that the variance of the estimate is a function of the unknown parameter [10]. 

Seelbinder [11] provided a method to determine the size of the first part of Stein’s two-stage 

sample for estimating the population mean with a given accuracy. Cox [10], Ghosh and 

Mukhopadhyay[5] have shown that the two-stage procedure suffers from the lack of asymptotic 

efficiency. That is, the procedure is asymptotically first-order inefficient, which leads to 

oversampling that is
*N n , where N  is the average sample size, and hence second-order 

asymptotic inefficient.  

Robustness of Stein’s two-stage procedure was first considered by Bhattacharjee [12], where 

he used the first four terms of the Edgeworth series to approximate the underline distribution, 

while Blumenthal and Govindarajulu [13] studied the robustness of the two-stage procedures 

under a mixture of two normal distributions. Ramkaran[14] considered the same problem and 

showed that Stein’s two-stage procedure is robust under the Edgeworth first four terms series. 

Sook and DasGupta [15] studied the robustness of the two-stage procedure against possible 

departure from normality only via the expectation of the random final sample size. They found 

that the procedure is robust for certain classes of distributions, including the t –distribution with 3 

and 5 degrees of freedom and double exponential distribution. 

 
2.2. Purely Sequential Procedure 

 

In order to tackle oversampling in the two-stage procedure, one may control the sampling 

process by estimating the population variance  successively in a sequential manner. Anscombe 

[16] introduced the idea of the purely sequential procedure, also known as one-by-one procedure, 

and discussed some of its asymptotic characteristics. The procedure proceeds as follows: Start 

with a pilot sample as in the previous case, but instead of taking a bulk sample we take the 

observations one-by-one and check with the following stopping rule 
 

  2 2inf : nN n m n a d S                                                                                                        (3) 

 

That is, if  
2 2

mm a d S stop sampling right here and the final random sample size is N m

, this means we have enough information in the pilot phase. Otherwise, take one additional 

observation say, 1mX   and update the sample variance by 2

1mS  . If  
2 2

11 mm a d S   stop 

sampling here and the final sample size is 1N m  , if not, draw an additional observation say 

2mX   and update the sample variance by 2

2mS   . Repeat the process until (3) holds.   

Regarding the purely sequential sampling, the seminal work of Robbins [17], Chow and 

Robbins[8] in one-by-one sequential sampling schemes were set forward to satisfy all the 

requirements of an efficient multistage sampling procedure, which enjoys all the above optimal 

criteria for both point and confidence interval estimation except the exact consistency property, 

while it attains the targeted nominal value only asymptotically.    
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The asymptotic characteristics of the one-by-one sampling procedure were given in 

Anscombe [18], and recently by Woodroofe [19]. Although the one-by-one sequential sampling 

procedure enjoys all the required optimal characteristics, which also guarantee a genuine stopping 

rule, still it can take quite some time to terminate the procedure, which is considered a drawback 

especially when time and cost are a matter of concern.   

  

2.3. Three-stage Procedure 

  

Hall [20] introduced the three-stage sampling procedure to achieve two primary objectives; 

the operational savings made possible by sampling in batches and the asymptotic efficiency 

attained by the one-by-one purely sequential sampling.  In the three-stage sampling procedure, 

sampling is performed in three bulks, the pilot study phase, the main study phase, and the fine-

tuning phase. Similar to the two-stage and the one-by-one sequential, we start with a pilot sample 

2m   and calculate both 
mX and 2

mS as point estimates of   and  respectively. During the 

main study phase and contrary to the two-stage sampling, we estimate only a portion  (design 

factor), 0 1  of *n . The decision to stop sampling or proceed to the next phase depends on 

the following stopping rule, 
 

 2 1max ,N m N ,   
2 2

1 1mN a d S  
 

                                                                                 (4) 

 

If 1m N , we stop at this stage. Otherwise, we continue sampling an extra sample of size

 1N m  from the distribution function to bring the total sample to
11 1, , , , ,m m NX X X X . 

Hence, we update the estimates, 
1NX and

1

2

NS  for both   and   respectively and proceed to the 

next phase. The fine tuning phase stopping rule   
    

  1

2 2

1max , 1NN N a d S  
 

                                                                                                     (5) 

 

If additional samples of size  1N N  are to be taken according to the fine-tuning stopping 

rule, we continue to sample
1 1, ,N NX X , then we terminate the sampling process and propose

NX  and 2

NS for both   and   respectively to perform the required inference.      

The three-stage procedure enjoys all the asymptotic characteristics required by any multistage 

sampling procedure, including the asymptotic efficiency of the first and second-order, as well as 

the asymptotic consistency of Robbins [17] and Chow and Robbins [8] of the one-by-one-

sequential procedure. Although Hall’s three-stage procedure was specifically designed to treat the 

confidence estimation problem for the normal mean, he mentioned in page 1230 that” However,  

It does not seem possible to give a global theory for all such applications, like that given in Cox 

[10] for double sampling.”  

Mukhopadhyay [21], Hamdy [22], Hamdy and Pallotta [23], Mukhopadhyay et al. [24], and 

Mukhopadhyay and Mauromoustakos [25] extended Hall’s three-stage sampling procedure to 

other distributions rather than the normal distribution and adopted the procedure to treat the point 

estimation as well, for more details see Ghosh, Mukhopadhyay, and Sen [4].  

Yousef, Kimber, and Hamdy [26] derived the asymptotic theory of the three-stage sampling 

for the mean of the unknown distribution provided the first six moments are unknown but finite. 

They studied the robustness of the procedure to the underline distribution and found that the 

procedure is generally non-robust, and robust only for a limited class of distributions.  

Yousef [27-28] studied the sensitivity of the normal-based three-stage procedure for 

estimating the mean of an unknown distribution to departure from normality. He found two 

compact forms of the three-stage fixed-width confidence interval for the mean. The first when the 
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explicit form of the underlying distribution is analytically known and the second when the 

underlying distribution can be approximated by the first four terms of the Edgeworth series. He 

showed that the three-stage procedure always produces coverage probabilities less than the 

nominal value and attains it only asymptotically. Also, the performance of the coverage 

probability depends on the characteristics of the underlying distribution, mainly the kurtosis; thus, 

the good or bad behavior of the performance is controlled by the behavior of the Edgeworth 

approximation for the standardized underlying distribution.  

  

2.4. Accelerated Sequential Scheme 

 

Hall [29] introduced the accelerated sequential schemes where the bulk sampling in the main 

study phase of the three-stage procedure is replaced by purely sequential sampling in the main 

study phase. The fine-tuning phase, however, remains the same as bulk sampling. The procedure 

starts with a pilot sample as before to initiate the sampling procedure and calculate mX  and 
2

mS  

as initial estimates of both  and  respectively.  The following defines the main study phase 
 

  2 2

1 inf : nN n m n a d S                                                                                                    (6) 

 

If the decision is to continue sampling, an extra sample of size 1N m  is to be randomly 

drawn from the population to update the estimates of both  and  by
1NX and

1

2

NS  respectively. 

The fine-tuning phase based on bulk sampling,  
 

  1

2 2

1max , 1NN N a d S  
 

                                                                                                     (7)                  

 

If we continue sampling, an extra sample of size 1N N  is to be randomly selected and 

augmented with previous samples.  Whenever sampling is terminated, we update the estimates of

NX and 2

NS then proceed to perform the required inference.  The accelerated sequential schemes 

enjoy the same asymptotic characteristics of the three-stage sampling procedure and achieve both 

the asymptotic efficiency and consistency. 

 

 2.5. Progressive Sequential Procedure 

 

In this study, we propose a new sampling procedure called the progressive sequential 

sampling procedure, which is very much the same as the accelerated sequential scheme where we 

interchange the main study phase by bulk sampling and ends by the fine-tuning phase. The 

asymptotic characteristics of the progressive sampling technique will appear somewhere else 

shortly.  

In the following lines, we present the progressive sampling procedure in three phases: The 

pilot-phase, draw a pilot sample of size m  2 from the distribution function and calculate both 

mX  and 2

mS  as initial estimates of   and   respectively. Second, the Main-study phase, for a 

given  , 0 1  , (design factor) we have 
 

  2 2

1 max , 1mN m a d S  
 

                                                                                                   (8) 

 

The Fine-tuning phase, once we stop sampling from the previous stage, we continue sampling 

based on   
 

  2 2

1inf : nN n N n a d S                                                                                                     (9) 
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Upon termination of the sampling process, we propose to estimate  and  by the 

corresponding sample measures NX  and
2

NS , respectively and proceed to perform the required 

inference. 

Table 1 below shows the asymptotic characteristics of multistage procedures, as shown and 

discussed in the literature. 

As one can see, all the results of multistage sampling procedures are asymptotic. Therefore it 

will be of interest to study the moderate sample size performance of all procedures using Monte 

Carlo simulation. Other criteria can be considered in our comparison, including the practical 

implementation of the procedure in real-life problems. 

 

Table 1. Asymptotic Characteristics of Multistage procedures 
 

Procedure First-

order 

Second-

order 

Consistent Asy. 

Consistent 

Point 

estimation 

Confidence 

estimation 

Oversample 

Two-stage No No Yes Yes No Yes Yes 

One-by-

one 

Yes Yes No Yes Yes Yes No 

Three-stage Yes Yes No Yes Yes Yes Yes 

Accelerated Yes Yes No Yes Yes Yes Yes 

 

We have to emphasize here that both the three-stage and the accelerated procedure may lead 

to oversampling if the choice of m  is somehow small relevant to *n . Table 2 demonstrates this 

behavior at * 500n  .  

 

Table 2. Asymptotic Characteristics of the three-stage procedure at 5m   , 0.5  , 1 0.95   
 

*n  N  SE( N )   SE(  ) 1   
24 19.98 0.05068 0.00139 0.00126 0.86712 

43 37.90 0.08094 -0.00090 0.00094 0.88144 

61 55.63 0.10364 -0.00119 0.00077 0.89650 

76 70.88 0.12036 0.00070 0.00067 0.90408 

96 91.05 0.13958 0.00056 0.00058 0.91578 

125 120.52 0.16532 -0.00056 0.00049 0.92310 

171 168.11 0.19977 -0.00025 0.00040 0.93072 

246 244.98 0.24990 0.00034 0.00032 0.93988 

500 506.01 0.41009 0.00017 0.00021 0.94606 

 

3. MONTE CARLO SIMULATION RESULTS 

 

Monte Carlo simulation is a computer-based method that depends on repeated random 

sampling and statistical analysis to compute approximate results generated from the procedure. 

These results are indications of the performance of the procedure. Although the results are not 

exact and depend on the number of repeated runs, it is still reliable in a sense it gives a wide view 

of how likely the estimates should be and determines whether the procedure is applicable or not. 

For more details, see [30]. 

 

3.1. Simulation Results  

 

We proceed with the simulation study by coding FORTRAN programs using Microsoft 

Developer Studio to generate a series of simulations. For each experimental situation, 50,000 

replicate samples were used. Random samples from the standard normal distribution were 

generated and a two-stage sampling rule (2), purely sampling rule (3), three-stage sampling rule 
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(4) - (5), the accelerated sequential sampling scheme (6)-(7) and the progressive sampling rule 

(8)-(9) were implemented to estimate the mean   and its standard error s   , N  the estimated 

values of *n  and its standard errors s  N and finally, the estimated coverage probability 1 . 

The starting sample size ranges from m  5, 10 and 15, while *n ranges from small, moderate to 

large sample sizes *n  24, 43, 61, 76, 96, 125, 171, 246, and 500 as recommended by Hall  20  , 

the design factor are chosen    0.3, 0.4, 0.5, 0.6, 0.7 and 0.8. Regarding the coverage 

probability, we take  1 0.95  .  For brevity, we report the case at m  10.  

Table 3 below shows the simulation results for the first four multistage procedures. Regarding 

the two-stage procedure, we noticed that the procedure achieves both the first and the second 

order asymptotic efficiency, that is 
*N n  and 

*N n is bounded by a finite number of 

observations contrary to the theoretical results. Also, the standard errors N are slightly higher 

than the other multistage procedures due to the high variability of the final sample size. The 

estimates are nearly unbiased with standard errors decrease as *n  increases. Regarding the 

estimated coverage probability, the two-stage procedure satisfies the requirement of exact 

consistency. It yields coverage probabilities exceed the required nominal value.  

Regarding the purely sequential procedure, the three-stage and the accelerated sequential 

procedure all generate estimates that satisfy all measures except the exact consistency. They 

generate estimate coverage probabilities that are always less than the prescribed nominal value 

while they attain the nominal values only asymptotically.  

 

Table 3. Moderate and large sample size performance of multistage procedures 
 

Two-stage  
Purely  

 
*n  N  SE( N )   SE(  ) 1   *n  N  SE( N )   SE(  ) 1   

24 24.64 0.0498 0.0010 0.0010 0.9570 24 22.34 0.0328 0.0003 0.0010 0.9256 

43 43.36 0.0907 -0.0000 0.0008 0.9504 43 40.87 0.0481 0.0004 0.0007 0.9296 

61 61.58 0.1288 -0.0006 0.0006 0.9512 61 59.21 0.0555 -0.0005 0.0006 0.9392 

76 76.57 0.1604 -0.0001 0.0006 0.9515 76 74.34 0.0600 -0.0000 0.0005 0.9430 

96 96.28 0.2027 0.0005 0.0005 0.9488 96 94.37 0.0662 0.0001 0.0005 0.9456 

125 125.47 0.2630 -0.0000 0.0004 0.9514 125 123.72 0.0733 -0.0006 0.0004 0.9448 

171 171.70 0.3616 0.0004 0.0004 0.9512 171 169.66 0.0849 0.0006 0.0004 0.9472 

246 246.40 0.5173 -0.0001 0.0003 0.9506 246 244.58 0.1008 -0.0001 0.0003 0.9489 

500 500.92 1.0569 -0.0005 0.0002 0.9511 500 498.72 0.1426 -0.0001 0.0002 0.9497 

Three Stage  Accelerated  

*n  N  SE( N )   SE(  ) 1   *n  N  SE( N )   SE(  ) 1   

24 20.39 0.0447 -0.0012 0.0011 0.8917 24 22.46 0.0366 -0.0013 0.0010 0.9205 

43 38.38 0.0680 0.0003 0.0008 0.9050 43 38.73 0.0615 -0.0002 0.0008 0.9155 

61 56.23 0.0839 0.0002 0.0007 0.9176 61 55.70 0.0798 -0.0001 0.0006 0.9179 

76 71.15 0.0949 0.0003 0.0006 0.9234 76 70.52 0.0910 0.0001 0.0006 0.9249 

96 91.31 0.1067 0.0004 0.0005 0.9309 96 90.68 0.1011 0.0001 0.0005 0.9298 

125 120.45 0.1221 -0.0005 0.0004 0.9336 125 120.13 0.1117 0.0005 0.0004 0.9371 

171 166.82 0.1421 0.0003 0.0004 0.9419 171 166.60 0.1265 0.0003 0.0004 0.9416 

246 242.58 0.1706 -0.0001 0.0003 0.9438 246 242.08 0.1460 0.0003 0.0003 0.9456 

500 497.72 0.2469 -0.0001 0.0002 0.9488 500 496.39 0.2029 -0.0002 0.0002 0.9468 
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3.2. Simulation Results Regarding the Progressive Sampling Procedure 

 

The simulation process performs as follow; 
 

First: draw a pilot sample of size m  10 from the standard normal distribution. 
 

Second: compute 
1

1

m

m i

i

X m X



   and    
212

1

1
m

m i m

i

S m X X




   .  

 

Third: apply the progressive sampling rule given in (8) with a specific combination of m , *n   

and  . That is 
 

    2 2

1 max 10, 1.96 1mN S d  
 

, 

 

If 1m N , stop sampling at this stage, else draw a bulk sample of size 1N m . The resultant 

sample at this stage is  
11 1, , , , ,m m NX X X X , update the estimates 

1NX  and 
1

2

NS   and 

proceed to rule (9). That is,  
 

  1

2 2

1inf : 1.96 NN n N n d S   . 

 

If 1N N  a stop at this stage else take additional observation and update the sample until the 

above rule satisfied, the final random sample is  
1 11 1 1, , , , , , , ,m m N N NX X X X X X  .   

That is, for i-th iteration, we obtain two arrays of size K  50,000 (number of simulations), 
* * *

1 2, ,..., KN N N and
* * *

1 2, ,..., KX X X .  

Let *

1

K

i

i

N N K and  
*

1

K

i

i

X X K  , where N  and X  are respectively the 

estimated mean sample size and the estimated mean of the estimator of the population mean 

across replicates. Thus, X  it may be regarded as an estimate of the expected value of the 

estimator of the population mean . The standard errors are 1SE s K , and

2SE N s K , where 
2

1

1

1
K

i

i

s X K and
2

2

1

1
K

i

i

s N N K . 

Regarding the simulated coverage probability, we count the number of times the true mean 

lies between NX d divided by the total number of simulations. 

Table 4 below shows the performance of the progressive sampling procedure under m  10, 

1   0.95, and different values  . The shaded line reflects the best performance of the 

procedure at a specified  . Obviously, for small, *n  we need a high value of  , while as *n  

increases the value of   decreases. The procedure satisfies all the measures except the exact 

consistency. Table 5 below demonstrates the moderate sample performance of multistage 

procedures and shows the significant improvement of multistage procedures under moderate 

sample sizes.   

Figure 1 below shows the performance of the simulated coverage probability for the three-

stage, the accelerated procedure, and the progressive procedure. The progressive procedure has 

better performance than the others even for small values of
*n .  
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Table 4. The performance of the Progressive sequential procedure 
 

  N  S( N )    S(  ) 1    N  S( N )     S(  ) 1   

*n  24 
*n  43 

0.3 21.5 0.0317 0.0004 0.0010 0.9202 39.79 0.0485 -0.0001 0.0008 0.9261 

0.4 21.5 0.0317 0.0013 0.0010 0.9196 39.78 0.0488 0.0011 0.0008 0.9263 

0.5 21.6 0.0319 0.0013 0.0010 0.9205 39.88 0.0492 -0.0007 0.0007 0.9278 

0.6 21.7 0.0328 -0.0017 0.0010 0.9191 40.51 0.0511 -0.0020 0.0007 0.9296 

0.7 22.4 0.0353 -0.0005 0.0010 0.9197 41.64 0.0555 -0.0006 0.0007 0.9315 

0.8 23.6 0.0390 -0.0003 0.0010 0.9271 43.51 0.0615 -0.0006 0.0007 0.9367 
*n  61 

*n  76 

0.3 58.1 0.0564 0.0005 0.0006 0.9349 73.24 0.0610 -0.0004 0.0005 0.9397 

0.4 58.0 0.0567 0.0004 0.0006 0.9347 73.27 0.0612 0.0005 0.0005 0.9399 

0.5 58.3 0.0573 0.0003 0.0006 0.9356 73.58 0.0624 -0.0004 0.0005 0.9389 

0.6 59.1 0.0612 0.0006 0.0006 0.9379 74.58 0.0668 -0.0000 0.0005 0.9423 

0.7 60.7 0.0671 -0.0009 0.0006 0.9405 76.45 0.0763 -0.0001 0.0005 0.9412 

0.8 63.2 0.0775 -0.0004 0.0006 0.9436 79.52 0.0892 0.0004 0.0005 0.9470 
*n  96 

*n  125 

0.3 93.4 0.0665 -0.0000 0.0005 0.9417 122.64 0.0743 -0.0003 0.0004 0.9450 

0.4 93.5 0.0668 0.0003 0.0005 0.9431 122.65 0.0744 -0.0006 0.0004 0.9450 

0.5 93.9 0.0688 -0.0000 0.0005 0.9428 123.15 0.0768 -0.0000 0.0004 0.9462 

0.6 95.1 0.0742 0.0003 0.0005 0.9450 124.66 0.0866 -0.0003 0.0004 0.9449 

0.7 97.7 0.0875 -0.0004 0.0005 0.9479 127.92 0.1062 0.0000 0.0004 0.9494 

0.8 101.3 0.1071 0.0006 0.0005 0.9489 132.79 0.1323 -0.0002 0.0004 0.9500 
*n  171 

*n  246 

0.3 168.7 0.0850 0.0002 0.0003 0.9453 243.80 0.1011 -0.0001 0.0003 0.9480 

0.4 168.6 0.0855 -0.0003 0.0003 0.9458 243.89 0.1019 0.0000 0.0003 0.9489 

0.5 169.5 0.0902 -0.0005 0.0003 0.9484 244.98 0.1104 0.0004 0.0003 0.9471 

0.6 171.6 0.1045 -0.0003 0.0003 0.9469 248.18 0.1359 -0.0002 0.0003 0.9494 

0.7 176.3 0.1345 -0.0003 0.0003 0.9493 254.16 0.1797 -0.0001 0.0003 0.9508 

0.8 182.5 0.1715 0.0003 0.0003 0.9543 263.17 0.2369 0.0003 0.0003 0.9524 
*n  500      

0.3 497.9 0.1418 -0.0001 0.0002 0.9506      

0.4 498.3 0.1467 -0.0001 0.0002 0.9500      

0.5 500.5 0.1707 0.0002 0.0002 0.9492      

0.6 507.0 0.2314 -0.0001 0.0002 0.9507      

0.7 519.2 0.3356 -0.0000 0.0002 0.9503      

0.8 537.8 0.4590 0.0000 0.0002 0.9544      

 

Table 5. Moderate sample size performance of Multistage Procedures 
 

Procedure First-

order  

Second-

order  

Consistent Asy. 

Consistent 

Point 

estimation 

Confidence 

estimation 

Oversampling 

Two-stage Yes Yes Yes Yes Yes Yes No 

Purely Yes Yes No Yes Yes Yes No 

Three-stage Yes Yes No Yes Yes Yes No 

Accelerated Yes Yes No Yes Yes Yes No 

Progressive Yes Yes No Yes Yes Yes No 
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Figure 1. The simulated coverage probability for different multistage procedures at    0.5 

 

4. CONCLUSION 

 

From a practical standpoint, we conclude that the two-stage procedure is more practical and 

easy to implement in real life situations, while the one-by-one sequential procedure is time-

consuming and costly to implement. For the three-stage, accelerated and progressive, we 

recommend the progressive sampling procedure due to the following: first, both the three-stage 

and the accelerated procedure are recommended to be applied at   0.5. Second, both procedures 

have a final stage that depends on bulk sampling, which may lead to oversampling. The 

progressive procedure can be applied for different design factors 0.3-0.8 and ends with fine-

tuning, one-by-one sampling. We noticed as the optimal sample size increases the design factor 

decreases to sustain efficient estimates for the mean and the coverage probability.  
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