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ABSTRACT

In this study, a system of ordinary differential equations used for modeling pathogen-specific CD8 cell
immune response is studied. The positivity and the limitation of the model solutions are proven. The
equilibrium points in the cases with the presence and the absence of the pathogen are determined and their
stabilities are investigated. Furthermore, the essential reproduction number is obtained for the system. The
conditions of the reproduction number for the stability of the equilibrium are shown and numerical examples
are given for supporting the analytical results.
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1. INTRODUCTION

Mathematical modeling in epidemiology, medicine and engineering is a popular research field
and has been gaining increasing attention in the last several decades. The emergence of
mathematical software, powerful computation hardware and numerical techniques with increasing
accuracy has gained mathematical modeling a prominent position within the disciplines of applied
mathematics. Differential equation systems with fractional derivation [1], random inputs [2-4],
stochastic noise [5] and various other components now has wide application areas in numerous
fields of science.

One of these application areas includes the analysis of human immune system through
systems of differential equations. Understanding CD8 T cell dynamics is a vital part of analyzing
immune response. In this context, this study concentrates on a mathematical model that considers
the multiple stages of pathogen-specific CD8 T-cell immune response. The T-cell immune
response is a process that begins with infection by a virus or bacteria and ends in the production
of memory T-cells which play an important part for the defense mechanism of the body against
the same pathogen. The progression of the cells from Naive T-cells to Effector T-cells and
Memory T-cells constitutes the response dynamics of immunity.
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We use the deterministic model of Crauste et al. to investigate the global stability of a CD8 T-
cell immune system response problem [6]. The analysis of the stability and equilibrium conditions
is important in a mathematical modeling study since, for instance in an epidemiological model, it
provides crucial information for the solutions of the systems and the persistence or eradication of
the disease. The stability of the system in the persistence and eradication of pathogens will be
investigated in an effort to provide a deeper understanding of the immune system response.

There are various T-cell immune system response modeling studies in the literature along
with various infection studies [7-10]. For instance, Dasbasi has recently used a system of
fractional-order differential equations to model the pathogen-specific response [1] whereas
Barroux et al. have given a multiscale model structured by intracellular content for CD8 T cell
immune system response [11]. The equation system used by Crauste et al. models the case in
which infection by multiple pathogens is present. The equation system is given as
dn(t)

at —unN = 6ygPN, ”
dz(tt) = SypPN + pgPE — ugE? — 8gyE, @
dgit) = —puuM + SpyE, o
dz—(tt):PpPZ — upEP — ypP. N

where the variables N(t), E(t), M(t) and P(t) denote the numbers of naive T cells, effector T
cells, memory T cells and pathogens, respectively [6]. The parameters of the model (1)-(4) are
given as:

Table 1. Parameters of system (1)-(4)

Parameter | Description Value
Uy Death rate of naive cells (0.01)
SnE Rate of change of naive cells 1073
PE The rate of proliferation of effector cells 1
Ug Death rate of effector cells 108
Sgm Rate of change of effector cells 10-5
Uy Mortality rate of memory cells 0
Op The rate of formation of pathogens 10~*
Up Natural mortality rate of pathogens 10~*
ud Measure-related mortality rate of pathogens 1078

The parameters have been determined for their daily values except u3 whose value is given
with the unit 1/(cells x day). The initial values of the system are

N(0) = No, E(0) = 0,M(0) = 0,P(0) = 1. ()

All of the values have been obtained from the original modeling study [6]. The equilibria of
the system (1)-(4) are obtained through the analysis of points where no changes are seen in
compartment populations.

The disease free equilibrium of the model is denoted by x, where x, = (0,0,0,0). The

0
equilibrium points in the existence of the disease are given as x1=(0,0,0,?), Xy =
P

— —_82
(0,22, =% ) and xy = (N*, E*, M", P*) where
HE ~ HUMHUE
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HUn Pp 0
*_(51\/5 +,up) UN PE  ME (KN PP 0
N = —E( 4 up ) + Opu |,
MPH11\/ OnE Up \ Oyg
. HUn PP 0]
E*=—— + u
Méz SnE i
N EM [HN Pp 0] N HUN
M= - + upl, P*=——
Upby L Ong i OnE

2. THE BASIC RE PRODUCTION NUMBER

Using the next generation matrix method [2], we analyze the basic reproduction number of the
model. Consider the equilibrium point x; = (Ny, Ey, My, P,) = (o,o,o, ﬁ—i) If z= (E, M, P)T, then
the model can be rewritten as

z' =F(z) =V (2),

Where
ppPE —6ygPN + pgE? + SgyE
F(z)=| 0 [,V@ =| —ppP?+ upEP + udP
0 umuM — bgyE

The Jacobian matrices of F(z) and V(z) at x;

e -[f Soven-[ L, ]

for
PEHD 0 ey O
F=[pp ],V=upu% _0l
0 0 pp Hp
0
The basic reproduction number, given by the spectral radius of FV =1, is given as R, = ;E%.
POEM

3. QUALITATIVE ANALYSIS

In this section, the positivity of the solutions are shown and the stability of the equilibrium
points are investigated.

3.1.Positivity and Boundedness

Theorem 1. Under the initial conditions (5), each of the solutions for the model given by (1)-(4),
is positive and bounded for every t > 0.

Proof. The model given by (1)-(4), is locally lipschitz at t = 0 [12]. Hence, a unique solution to
the model under the initial conditions (5), exists on [0,a) for some a > 0. Let
(N(t),E(t), M(t), P(t)) be a solution of the model (1)-(4).

For some t; > 0, using (1), we see that if N(t;) = 0 and t; is the first moment satisfying this

condition, then AN < . Then DO — —uyN for t €[0,t,) = N(t,) = N(0)e ¥tz > (,

which is a contradiction. Hence, N(t) > 0 forall t €[0, a).
Using (2), we get di—(tt) = —8gyE for t €[0,t3) = E(t;) = E(0)e %Mt > 0, which is a
contradiction. Therefore E(t) > 0 forall t €[0, a).
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A similar approach can be used to show that N(t), E(t), M(t), P(t) > 0 for all t €[0, a). This
means

dN  dE ,
2t T ac = MwN +ppPE — pgE — 8pmE
P%p} Ppg \?
= —(JugE — —==) —uyN — 8gyE
. ( HE ZJE) Hn EM
P%p}
< —A(E+N
”m ( )
2,52
for A = min(uy, 6gy). Hence, lim;_, sup(N + E) (t) S:AZE = K*(say) [12]. Therefore,
E

positive constants K; > K*and T; > 0 exist such that if t = Ty, then N(¢t) + E(t) < Kr. Since
N(t),I(t) > 0, for t € [0,a), we see that N(t) < Ky, E(t) < Ky. Using (3), we see dlz—it) =
—uyM + SpmE < —uyM + Spy Ky,

SemK:
lim sup M(t) < 2T K.
t—oo Um

Hence, positive constants K, > Kj; and T, > 0 exist such that if t = T, then M(t) < Ky,.
Similarly, using (4)
dP(t)
dt

= ppP? — upEP — upP < ppP? — upP = P(t)
P(0)up
~ P(0)pp + (45 — P(0)pp)es"

and lim;_ sup P(t) <0 which gives the uniformly boundedness of the solutions of the
model (1)-(4). This means that if the positivity of the solutions of (1)-(4) for all t € [0,a) is
considered with the uniform boundedness, then a = co.

]
Theorem 2. The equilibrium point x, of the model,

i. is locally asymptotically stable if Ry = 1,

ii. isunstableif Ry < 1.
Proof. (i) The Jacobian matrix of the model at x, is

—HUNn 0 0 0

0 -6 0 0
() =Jo = EM_
J(x0) = Jo 0 6y —Hu O

0 0o 0 —up

The characteristic equation of ], is found as 2* + 4313 + 4,12 + 4,1 + A, = 0 for

Az =y + up + piy + Sgy > 0,

Ay = (uy + )y + 8em) + (Uppn + Sgmtin) > 0,
Ay = gty (uy + 1) + (uy + Spa)uppin > 0,
Ao = uRum ity > 0.

Hence,

Q1 = A3A, — A; > 0. (See Appendix A)
and

Q, > 0. (See Appendix B)

Thus, the model is locally asymptotically stable around x, if Ry > 1.
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(ii) For Ry < 1, it is seen that Q, < 0 and Q5 < 0 which fails the Routh-Hurwitz criterion.
Thus, the pathogen free equilibrium point x, is unstable for R, < 1.

It is known that for x, = (0,0,0,0), the equilibrium is locally asymptotically stable if all
eigenvalues have negative real parts and unstable for eigenvalues with positive real parts [13]. All
of the eigenvalues are real since

M o=~y Ay =~ Az = —pp, Ay = —Sgu
Through the assumption py > 0, iy > 0,1 > 0,8y > 0 for the parameters, it is seen that
A1, 45,23, A4 are negative for this model. Thus, the equilibrium point x, = (0,0,0,0) is locally

asymptotically stable.
]

()

Theorem 3. The equilibrium point x; = (0,0,0, ﬁ—") of model (1) is locally asymptotically stable
P

for Ry < 1 and unstable for Ry > 1.

Proof. The Jacobian matrix of the model at the equilibrium point x; is obtained as

J(x) =11
[—tin — SneP 0 0 —6ngN
_ SneP —6gm — 2usE + pgP OneN + peE
0 8em “Hm 0
0 —upP 0 —pp+2pp — upE x1<0,0,0,5_%>
P
Ly, Onete o
N Pp - PEkP 0
= Snplp Pr 0 0
p— 8em —HUm 0 0
0 upp 0 ke F 20
0 Pp

The characteristic equation of J; is
A* + B3A3 + ByA2 + BiA + By = 0,
Where
Pp pp
By = — 28gmpp + tmbn + UmEp + Unip — 20mpPp — 2unpp + 2UppE + Spmiiy
6NEMF0’2 _ .UgZPE " SemOnsHp
P Pp Pp
n SnpMMMP _ HmHPPE _ UNUPPE n (6NE#19'2.DE)

Ppr Ppr Ppr pi
By = 28pmOngtip + Spmimpin + Spmpimip — 20ngtmip + Spmiinitp — 28pmimpp
8NEHM#1(32 + 8EM6NE#19'2 + 26NE”?’2.DE _ 51\15#33!’5

By =y + uy + up — 2pp + <0,

+ Spmbn + Spmip — 26npup +

<0,

— 28gmUnpp t
EMZ e pr pp pp oP
_ #MH?’ PE HNllg PE 4 5EM5NE#M112 _ llMMNMgPE _ 6NEHMMI(g PE
Pp Pp Pp Pp Ph

>0
By = — 28y Ongtuip + Sembmbntp — 28pmbminpp — 2AmEnPp + 21N HpPE
02 02 03 02

+ 28ypumbtp P _ HuHENHP PE Snebmbp P n OemONE M Ip

pp Pp P} pp
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Thus,
Q1 = B3B, — B; > 0, (See Appendix C)
Q, = B3B,B, — B? — B2B,, > 0. (See Appendix D)
If Ry > 1, then B; < 0 and B, < 0 which means the Routh-Hurwitz criterion fails and the
0
equilibrium point is unstable. The equilibrium point x; = (0,0,0,?) is locally asymptotically
P
stable if all eigenvalues have negative real parts and is unstable if there are eigenvalues with
positive real parts. All eigenvalues are real since

. 1pPE

M25NE
- —unde = —lm Az = 2pp — pp, Ay = op — Oem-

Pp

The parameters were assumed to be py > 0,1y > 0,3 > 0,pp > 0. Hence A4,1,,15, 1,4
gives eigenvalues with positive real parts and for this selection of variables and the equilibrium

0
point x; = (0,0,0,;‘—”) is locally unstable.
P

11:

- _82
Theorem 4. The equilibrium point x, = (O,%,%, 0) of model (1) is locally asymptotically
E MHMHE
stable for Ry < 1 and unstable for Ry = 1.
Proof. The Jacobian matrix of the model at x, is

J1(x2) =],
[—un — OneP 0 0 —OngN
_ SneP —6gm — 2ugE + pgP OneN + pgE
0 8em “Hum 0
0 —upP O Bt 20 = Bl (o=t ot )
" HE UMME
r 0
-uy 0 0 _PeSem
_| 0 &m0 HE
0 Sy Hm 0
0 0 UpSem
—up + 2pp —
L HE
The characteristic equation of J, is found as
14 + D3l3 + Dzlz + Dll + DO = O,
where
Semitp
D3 =y — Sgy + iy +up — 2pp+ >0,

Dy = 28gmpp + tmbn + Hultp + UnHp — 2UmPp — 2UnPp — Sembm — Spmin

8% 1)

Sl — EMHP+ e <0,
HE HE

Dy = — Spmimiin — Sembmbp — Sembnip + 285mimpPpr + 28pminpp + HpHNUP

52 52 1)
EMHmHp  OEMHNHP n EMHUMHUNHP >0,

HE HE HE

SEm by ip
Dy = 28gmUmUnPP — T ~ Sgmbminpp = 0.

— 2umbnpp —

Hence,
Q1 = D3D, — D; < 0, (See Appendix E)
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and

Q, = D3D,D; — D? — D2D,, < 0 (See Appendix F)
for the case Ry <1, D, < 0 and Q; < 0,Q, < 0 which means the Routh-Hurwitz criterion
fails and the equilibrium point is unstable.
The equilibrium point x, = (0,%,%’2;";,0) is locally asymptotically stable if all
eigenvalues have negative real parts and is unstable if there are eigenvalues with positive real

parts. All eigenvalues are real since
Spmip
M =8 dy = —um Az = —pin, Ay = —pp + 2pp — T
Through the assumption
UN > O,HM > O,ﬂg > 0'6EM > 0,pp >0
for the parameters, it is seen that the eigenvalues have positive real parts and the equilibrium point
— _SEM _é%M 1
Xy = (0, S 0) is locally unstable.
|

Theorem 5. If Ry < 1, then the equilibrium point x; = (N*, E*, M*, P*) of the model is locally
asymptotically stable. Elsewhere, x5 is unstable.

Proof. (i) The Jacobian matrix of the model at x5 is

—ty — OygP 0 0 —6ngN
) = )y = 5N0Ep Sem ;g:;E +pEP_2M 5NENO+ peE
0 —upP 0 —up+2pp = MpEL (v g pry
—iy — Oy P* 0 0 —OngN*
SneP* —6gm — 2pugE" + pgP” SneN™ + pgE”
0 Oem —Hm 0
0 —upP” 0 —up+2pp — upE*

and the characteristic equation of 5 is found as
14 + Eglg + Ez).z + Ell + EO = 0,
where
Es = 8gy + iy + iy + up — 2pP* + 2E*up + E*up + P*Syg — P'pp >0,
Ey = — 28pupP* + umiy + umip + APunup — 2umpp — 2unpp + Spmiy + Spuity

+ 8gmptp + + E*Spmp + P*Syg + 2E pupiy + 2E  ugpy
+ 2E*pugup + E*uyitp + E*pypip + P*Sygpiy + P*Sypup
— 4E"ugpp — ZP*Z(SNEPP - P*élMPE — P*unpg — P*uppg
+ 2P*pgpp + 2E™ pgpp — P*“Onppp + 2E"P*Oypug
+ E*P*(SNE.HP + N*P*éNE#P < 0,
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Ey = Sgmbmbn + Semimip + Spmbnkp — 28pmbmpp — 28pminpp + Muinip —
2umpinpp + E*Spmbmitp + E*Spmunitp + P*SgyOptiy + P*SpyOnpup —
2P*SpmOnppp + 2E pupuyiy + 2B ppuyup + 2E uguyup + E ppinpp +
P*Sngumip — 4E upumpp — 4E upinpp — 2P*Sygimpp — P’ lmiinps —
P uypupps — P unubpe + 2P umpepe + 2P unpppp + 2E*  ppuypp +
2E"pugunpp — P *8ypumpy — P**Sngupps + 2P *Syppppp + EP"Spubupup +
2E*P*8yplgtn + 2E*P*Sypugpp + E*P*Syplyitp — 4E*P*Sypugpp +
N*P*Sygumie + NP Sygunpp + 2E*P*Sygpgup <0,

Ey = Sgmbmbnitp — 28gmptmpinpp + E*Spmptmpinitp + P*SpyOnpAup
P*SpmOnpttmttp — 2P*SpmOnpimpp + 2B ppiiiipiip
4E pppmpinpp — P umiinpppe + 2P Uninpppp
ZE*ZHEIJMHNHP - P*ZSNE#MM?’.DE + ZP*ZSNEMM.DE.DP
2E**P*Sygupumitp + EP*SypOngimitp + 2E°P*Sypugiyup
4E"P*Snppeumpp + NP*Oyppmpnpp = 0.

+

|+ +

Hence,

Q: = E3E, — E; < 0, (See Appendix G)
Q, = E3E,E, — E} — E2E, > 0.

(ii) If Ry > 1 then E, < 0,E3 < 0 and Q; < 0 which means the Routh-Hurwitz criterion is
not satisfied and the equilibrium point is unstable for this case.

The equilibrium point x; = (N*, E*, M*, P*) is locally asymptotically stable if all eigenvalues
have negative real parts and is unstable if there are eigenvalues with positive real parts. Through
the assumption

UNn > O,H.M > O,Hg > OFSEM > 0,pp >0

for the parameters, it is seen that the eigenvalues have positive real parts and the equilibrium
point x3 = (N*,E*, M*, P*) is locally unstable.

3.2.Model Permanence

Definition 1. A system is said to be permanent if the positive constants 0 < § < A exist such that
mm{ = 11m infN(t),E = llm infE(t),M = 11m infM(t),P = 11m mfP(t)} > 6,
max {_ = tll_)rg supN(@),E = 21_{2 supE(),M = tlLrg supM(t),P = L!l_}rg) supP(t)} <A
for all solutions of the system.

Theorem 6. The model (1)-(4) is permanent pEiﬂ > 0, for the limit superiors M and P of the
E

variables M(t) and P(t), respectively.

Proof. Using (1) and (2), we see that

dN dE
+——= —puyN + ppPE — ugE* — SgyE
dt | dt ) , ©)
P2pi ( PE P2pi
= - ,/,uE——) —uyN — 8gyE < —A(E+N
dp | \VHEE g y) TN S = A
where A = min(uy, 6gp). From (6), we see that
P2pi P2pi
1 N+E)(t < N—l N(t) <
im sup(N + E) (t) Y. = im sup ) < v
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and

= P2p}
E=1 E(t) < .
tow UP LE 4Ap
Through the limit superior definition, a time T" exists for € > 0 such that E(t) = (E — ¢) for
t > T'. It can be found that

E(t) = E(0)e %emt = tlim Et)=0

and hence, the limit of E (t) exists.

d 5 0 —2
E(M +P) = —uyM + SgyE + ppP? — pupEP — upP < ppP
—2
= tlim sup(M + P) (t) <ppP
R —_2 — —2
>M= tlug supM(t) < ppP ,P = tlng supP(t) < ppP
Once again from (3), we find
dM(t)

— ) —
Uy

Using the equality, it is seen that lim,_,c, infM(t) = ‘Z’"—M(E — €). Since € > 0 is small, we
M
see that
6EM =

M = lim infM(t) = —(FE — €

- t—oo f ( ) #M ( )
From (4), we find

dP(t) 2 0 0 T 0

o = PpP? — upEP —upP = PlppP — upE — up] = PlopP — upE — ip]

E_ 0
= ppP [P _ (#P #P)]
Pp
and hence
(HPE - Hg)
P = lim infP(t) = ———=.
t—oo Ppr
From (1),
dN(¥) - = —Snp—
dt UN
which gives
—OnE —
N = lim infN(t) >N —£P.
t=oo Hn
From (2),
dE(t) 5 5
Q- SngPN + pgPE — pgE* — 6gymE = pgPE — pgE* — 6gyE
PeP — 8gm
= E(PEB —ugE - 5EM) = ugk (— - E)
HE
Hence,

P36
E = lim infE(D) = [p’“’——”’ - E]
toeo HE
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PEP—8EM
UE

for > 0.

3.3.Global Stability

In this section, the global stability of the equilibrium point x; will be analyzed through the
geometric approach in [14-15].

Theorem 7. Let y — f(y) € R* be a C* function for a y in a simply connected domain c R* ,
meaning it has a continuous derivative, where

N —unN — ygPN
_|E _ | 8ngPN + pgPE — ugE* — 8pyE
y= M| f(Y)— _#MM+5EME /
d ppP? — upEP — upP

Consider the equation system y = f(y) with the initial conditions (N, Eo, Mo, P)T =
vo (say) satisfying the following properties:

i.  Assume that a solution of the system y = f(y) is shown as y(t, y,).

ii. The system has a unique endemic equilibrium x3 < D.

iii. There exists a compact absorbing set K c D.

iv. The system satisfies the Bendixson criterion, meaning it is robust under C* for local
perturbations of f at all non-equilibrium non-wandering points of the system [14].

v. Lety — M(y) be a 6 x 6 matrix valued function with a continuous first derivative for
y € D, such that M~1(y) exists and is continuous for y € K.

In this case, the endemic equilibrium x3 is globally stable in D if
— 1t
T2 = lim supsupsex 7 [ HBGE, 7)) ds <0 )
0

2]
where B = MfM‘1 + Maaf—xM‘1 and My is obtained by replacing each component m;; of M
with its directional derivative in the direction of f, Vm;;f and u(B) is the Lozinskii measure of B
with respect to the vector norm | - | in R*, defined by [16]

I +hB| -1
T - 8
A ®)

Proof. The model (1)-(4) is persistent since it is permanent, as shown above. Hence, since the
endemic equilibrium xj exists, system persistence and boundedness of solutions give the
existence of a compact absorbing set K < D [17]. The Jacobian matrix of the model is given as

HEE) = 0.

—uy — OygP 0 0 —6npN
J= SneP —0gm — 2UgE + pgP g OngN + pgE
0 8em “Hm 0
0 —upP 0 —up+2pp —upE

and the corresponding associated second compound matrix (2! is given as [15,18]
/ aqq 0 6NEN +pEE 0 6NEN 0\

6EM az; 0 0 O 6NEN
g2l = | —p 0 a3z 0 0 0 |
0 SygP 0 am 0 —8ypN —pgE |
0 0 6ygP 0 ass O
0 0 0 upP Ogy Qe
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Setting Q = Q(N,E, M, P) = diag (1,1,1,1,%,5), we see that Q,Q~! = diag (o,o,o,o,g -
%% - %) and hence B = Q;Q* + QJ?1Q . Therefore

aqq 0 8NEN +pEE 0 5NEN 0
5EM az, 0 0 O 6NEN
B Bll 312

_#PP 0 ass 0 0 0 = ]
0 SygP 0 sy 0 —OyeN —pgE |~ 1B21 Bzl
0 0 0 upP GSgm  bes
Where
a11 = —ny — SygP — 6py — 2ugE + pgP,
azz = =iy — OneP — py,
aszz = —piy — SypP — pp + 2pp — pE,
Aqq = —bpy — 20gE + pgP — uyy, ]
E
bss = —8gm — 2UgE + pgP — up + 2pp — PE t=—=
E M
=y — 10 +2 E
bee MUpm — Up +2pp — Up +E w
B11 = [a1] = [~uy — OngP — 8pu — 2ugE + pgP],
By, =[0 OygN+pgE 0 SygN 0],
By =[8gm —upP 0 0 0]
and
0 assz 0 0 0
By, =|6ygP 0 asa 0 —OyeN—pgE |
0 0 upP bgm  bes

The Lozinskii measure of B is defined as

u(B) < max{gs, g}

where g; = u(By1) + |IBy2|l and g, = u(Byy) + ||B,, || for the vector norm ||. ||.
It can be seen that (see Appendix I)

E -
<—— 9

uB) <z -b )

where
—  OygPN
b=—"E "4y +OngP + ugE — SygN (10)

for sufficiently large t. Then, for t > t it is seen that
1 (¢ 1t E(t t—1)—
—f w(B)ds < - f u(B)ds +—1 E® ( )b (11)
t), t E®D t

for each solution (N(t),E(t), M(t),P(t)) such that (N(0),E(0),M(0),P(0)) € K. The
definition of g, and the boundedness of E(t) imply g5 < 0. Hence, the equilibrium x; =

(N*, E*,M*, P*) is globally stable.
|
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4. CONCLUSION

In this study, the deterministic mathematical model of Crauste et al., which consists of four
differential equations modeling pathogen-specific CD8 T cell immunity response, has been
analyzed. The equation system is original since it models infections by multiple pathogens and a
stability analysis has been performed for the system. The steady states, basic reproduction number
and the local stability conditions of the equilibrium points have been investigated. The positivity
and limitation of the model were analyzed and persistence and global stability of endemic
equilibrium were studied. This analysis provides useful information for the dynamics of CD8 T
cell immune responses and can be applied to similar models in the area.
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6. APPENDICES

Appendix A: Calculation of Q for the characteristic equation of J,

Q1 = A3A; — Ay = (um + up + py + Sen) [y + 1) n + 8em) + Wppy + Semiia)]
— [Bemtm (un + 1p) + (uy + Sgadupun] >0

Appendix B: Calculation of Q, for the characteristic equation of J,

Q2 = A3AyA; — A2 — A5A0 = (uy + 1p + iy + Sea) [y + 19) (g + Sm) +
(uppy + Semta) Semim (un + 1) + (uy + Ser)upun] — [Semim (uy + 1p) +
(un + Seadupun]? — luy + pp + py + Spm*up iy Spmitn > 0.

Appendix C: Calculation of Q4 for the characteristic equation of J;

S
Q1 =B3B; —B; = (MM +ouy +pp — 2pp + N::P MPPE [ 28gmpp + mpn +

Umpp + unpp = 2umPp — 2unpp + 2Uppp + Spuiiy + Semtn + 6EM12uP -
2 2
251\15#3 + SNEMD  _ P PE + SemONEHD + SneimHp  pMHBPE _ KNHBPE + (SNEu;‘Z pE) (uy +
pp pp pPp pp pp pp

w2 (uy + 8em) + (Wppw + SEMﬂM)] - [2515M51w;#1(3 + Spmbimbn + SpmbmHp —

2 2
SnEUMUD + SEMONEUD +
pp pp

28numip + Spmpinip — 28gmpmpp — 28pminpp +

2
28NEUD PE 5NEHP PE
PP ph

(minpppe)/pp — (Snplmitp pE)/pﬁ] > 0.

(Ump PE)/PP — (unpp PE)/PP + (BemOnpmiD)/Pp —

Appendix D: Calculation of Q, for the characteristic equation of J;

+

s
Q2 = B3B;,By — Bf —B3By = (.UM + oy +opp = 2pp +EE L #PPE) [— 26gmpp

pp pp
Huby + dmpp + dypp —ZZHMQP — 2uypp + 2uppg + Sempty + Spmitn +
Semip — 28npup + 5NEMP _ b pg y Spunpup | SnpiMp _ MuMPPE _ MnMEPE |
PP PP PP pPp pp
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Oweng’ pr)

% (uy + up) (uy + Sgm) + (uppy + 6EM#M)] [26EM6NEﬂ19 + Semptmpn +
5 9?

SembmMp — 26ngiubp + SpmbnHp — 28emimPr — 28EmMNPP +%+

SemOnEnd’ + 25NE#10>2PE ongnd’ PE _

pp pp PR
p — (UminEpPE)/Pr — (Snpimip PE)/P;E] - [25EM6NE#12 + Sgmimpn +

— (umpp PE)/PP — (unup PE)/PP + SemOnpimMp)/

Snpkmuy’
Semtmttp — 28nptmptp + Sempintp — 28emimpp — 28gmHNPP +%+

SemOnEnd’ + 251\15#?’2105 ongnd’ PE _
pp pPp P
2
(BpmOnpimtp)/pp — (UmbnkpPE)/Pp — (Onplmip PE)/P;Z’] - [#M +uy + pp —

SNEMP _ BBPE
pp

(HMMP PE)/PP - (#N#P pE)/.DP

20p +—— ] [ 28pmOnpUMHD + Spmitminip — 28gmimbinPp —

T R 5NEMM#P PE
- + (6gM9,
op op (6em NEHMIJP )/

ZMWWMJWMM%+

pp] > 0.

Appendix E: Calculation of Q4 for the characteristic equation of J,

S
Q1 =D3D, =Dy = (#M —Opgm + iy +up — 2pp+ %:P) [25EMPP +umiy +

SEmip +

tutp + Unip — 20mPp — 2UnPp — Spmbm — Spmiin — Semip —

SemiMUP
U

UmiNEp — 2UMENPP =

] [_ Sembmbn — Spmbmtp — Spmiinip + 28gmitmpp + 28sminpp +

SEmbmbp _ SEminip + 5EMI4M/4N/4P] <0
HE HE HE

Appendix F: Calculation of Q, for the characteristic equation of J,

S
Q; = D3D,D; — D} = D3D, = (#M —O8pm + Uy +up — 2pp + EL”P) [25EMPP +
61%ZMH'P +

tmpn + UmEp + Unpp — 2umpp — 2nPp — Sgmbm — Opmbn — Spmip — .

s
MH Sembmbn — Spmtimip — Spminip + 28pmimpp + 28pmiinpp +

SEmimitp 5EM#N#P+5EM#M#NMP

#M.UN.UP — 2UmUnpp — e E E ] - [_ SemUmbn —

Sembmbp — Sembnip + 28embupPr + 28pminpp + MNP — 2imiinPp —
SEmbmbp _ SEminip + 5EMMMMNMP]2 _
HE HE HE

SEmiMENIP

5EMHP]
HE

[#M —O8pm + Uy +up — 2pp + [ZgEM#M”NpP - 5EM#MﬂNﬂg] <

0.
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Appendix G: Calculation of Q4 for the characteristic equation of J;

Q1= EsE; —Ey = (8gy + iy +in + pp — 2pP" + 2E™ug + E*up + P8y
— P*pp)[— 26gmpP” + iy + umip + 2punpp — 2pmpp
— 2unpp + Spuim + Spmpin + Sgmptp + + E*Sgypp + P*Oyg
+ 2Epupuy + 2E ugpy + 2E ugpp + E*pypp + Epyup
+ P*Sygpy + P*Sypup — 4E*ugpp — 2P*Syppp — P uympe
— P'unps — P'upps + 2P"pppp + 2E  ugup — P**Sygpp
+ 2E*P*Sypug + E*P*Sygpp + N*P*Sygup)
— [Bempmin + Spmpmttd + Spmintip — 28mimpr — 285minPp
+ UmBNHp — 2pmpinpp + E*Spmimite + E*Spypinitp
+ P*SpmOnptm + P SemOnplp — 2P SpmSnppp + 2E pptiypiy
+ 2B pupumpp + 2E ugpuypp + E uyiinptp + P Syp iy
— 4E"uguypp — AE ugpunpp — 2P"8npumpr — P UmUNPE
— P*uypppp — P unippe + 2P umpepp + 2P unpppp
+ 2B ppuypp + 2E ppuypp — P Sygumpr — P Snpupps
+ 2P *8yppepp + E*P*Spubpip + 2E"P Sypugiiy
+ 2E"P*Spupup + E*P*Sypimip — 4E*P*Syppippp
+ N*P*Sygpumpp + N'P*Sygunpp + 2E"*P*Sypugup] < 0.

Appendix H: Computation of the Variational Matrix

Let
fi = —uwN — 8PN,
fo = 8ygPN + pgPE — ugE* — 8gyE,
fz = —umM + SgmE,
fa = ppP? — upEP — p3P.
Hence, the general variational matrix is given as
0fi 9 0fi Ofy
ON OE oM 9P
f, o 3f of
v=|9N OE oM oP
[ 0fs 0fs 0fs 0f3 |
|ov 98 am P |
\0f4 o 0f of /
N E oM 9P/ gearr
where (N*, E*, M*, P*) is the equilibrium point for f; = f, = f3 = f, = 0. Then the general
variational matrix for the model (1)-(4) is given by

—#n = SngP” 0 0 ~OneN®
v SneP* —6gm — 2ugE™ + pgP” OneN™ + pgE”
0 Opm ~Hm 0
0 —upP* 0 —up+2pp — ppE*

Note that a different variational matrix can also be given for the system.
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Appendix I: Calculation of the Lozinskii Measure of the Matrix B.

The Lozinskii measure of B is given as
(12)

u(B) < max{gy, g»}
for g; = u(By1) + ||B12ll and g, = p(By;) + ||B4l. Thus, we obtain

#(B11) = —uy — SypP — 8py — 2upE + pgP,

|Bi2ll = SneN,
IB12ll = |IB12ll = SygN.

Then,
g1 = —tn — ONgP — Opm — 24gE + pgP + SygN, (13)
g2 = 6ngN + p(Byz = O). (14)
[By2]sxs can be denoted as B,, = C' = Cir C“], where
C21 Cp2
Ci1 = [az,] = [—uy — SygP — tml,
Ci2 = [0 0 0 &ygN],
Co = [0 oygP O O]T,
azz 0 0 0
Cor = 0 auy 0 —6ygN—pgE
22 SygP 0 bss 0
0 wupP bgm  bes
Hence,
u(C") < max{gs, g} (15)
is obtained for
g3 = u(Cr1) + ICi2ll = —py — SygP — py + SygN, (16)
ga = SngP + p(Cy). (17)
[C22]4x4 is partitioned to calculate u(C,,)
' Dy D12]
C =D =
22 Dy1 Dy,
Dy = [ass] = [~un — SngP — pp + 2pp — upE],
Di;=[0 0 0]
Dy, = [0 dyeP O]T,
and
ase 0 —6ypN —pgE
Dyp = 0 bss O
upP  0gm  bes
If we denote
(18)

1(D) < max{gs, ge}
for gs = u(D11) + |ID12ll and gg = u(D;z) + 1D, we have u(Dyq) = —uy — SygP —

tp + 2pp — ppE, |ID1;]l = 0 and [|Dy; || = SyeP.

E E

Let D =E=[11 121 then
22 E21 EZZ

(19)

(20)

9s = —Hn — SygP — up + 2pp — ppE,
ge = 6ngP + u(Dyy = E).

and
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Eyy = [aga] = [=8pm — 2uE + ppP — uyl,
Ei; =[0 —8ygN — pgE],
Ey =10 HPP]T,
Eyp = _
227 |8pm bes
Once again, the Lozinskii measure of E is defined as

u(E) < max{gy;, gs},

@1

where g; = u(Ey) + |Eizll,  gs = u(Ez2) + |E2qll,  wu(E11) = —8gm — 2ugE + pgP —
Hpm» ||El_2|| = —8ygN — pgE, ||Ez1 |l = upP and pu(E,;) = max[bss + Sgy, bes) = —up + 2pp —

upE + g - % + max{—2ugE + pgP, —uy}. Therefore,
97 = —6gm — 2ugE + pgP — py — SygN — pgE,
E M
9s = #pP — up + 2pp — upE + 7 — 35+ max{=2ugE + ppP, —pias}-
Using (22) and (23), (21) becomes
o E M
H(E) < pupP — up + 2pp — ppE + T mt max{—2ugE + pgP, —up}.
(20) and (24) give,

E M
96 < SngP + ppP — pp + 2pp — upE + = — — + max{—2ugE + pgP, —uy}.

E M

Hence,
E  6ygPN
Ez E + peP — pgE — 8gm,
M Hm M

Using, (25) and (27) we obtain

E SemE o

96 = E + Uy — M + OngP + upP — pip + 2pp — pupE + max{=2ugE + pgP, —py}.

(19) and (26) give
g SygPN

E
gSZE_#N_6NEP_#g+2pP_#PE_ —peP + ugE + 5y

(18), (28) and (29) give

E SemE o
u(D) SE+#M _T+ OneP + upP — pp + 2pp — upE
+ max{—2ugE + pgP, —um}.

(17) and (30) give,

i SemE .
g4 = E + Uy — T + 285gP + ppP — up + 2pp — upE + max{—2ugE + pgP, —pin}

(16), (17) and (31) give

é‘EME 0
T‘l' 26NgP + upP — pp + 2pp — pUpE

+max{—2pgE + pgP, —pn}
(14) and (32) give

E
u(€ SE+NM_
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(22)
(23)

(24)

(25)

(26)

@7)

(28)

(29)

(30)

@31

(32)
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SgmE

PeP, —uu}.
Using (13) and (26)
E  bygPN
=%~ Nij — Uy — OngP — tgE + SypN (34)

Hence, we get

E

u(B) < 5 b
for sufficiently large t, where
b= SNZPN + Uy + OygP + ugE — SygN (35)
]
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