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ABSTRACT 

 

Intensity is described as the number of points per unit area for a spatial point pattern. Intensity estimation of a 

spatial point pattern is necessary to determine hot spots, cold spots and clusters in a study region. Moreover, 

intensity may be a determinant for spatial point pattern type. It is also an indicator of risks while the points 
called events include the locations of the earthquakes through a fault zone, crime incidences in a district and 

etc. Therefore, determining the intensity provides taking precautions against possible undesirable and 

unexpected future incidences.  In this study, several methods of intensity estimation for a spatial point pattern 
are given. Advantages and disadvantages of the mentioned methods are discussed. Finally, intensity images 

that are obtained by using different methods are compared. Adaptive kernel density estimation gave a better 

result in comparison to other intensity estimation methods.    
Keywords: Spatial point patterns, intensity, kernel density estimation, adaptive smoothing, quadrat counts.  

 

 

1. INTRODUCTION 

 

A spatial point pattern consists of irregularly distributed set of locations within a certain 

region of a space and it is assumed as an outcome of a generated stochastic mechanism. The 

locations of the spatial point pattern are called events to separate from arbitrary events in the 

study region [1].  

Cressie [2] made a pioneering classification for spatial data which is accepted as a valid 

classification up to date in the literature and categorized spatial data into three groups according 

to their domain features. These groups are lattice data, geostatistical data and spatial point 

patterns. A spatial point pattern is the realization of a process in two-dimensional space 𝑍(𝐬): 𝐬 ∈
𝐷 ⊂ ℝ2 while D is a random domain, 𝑍(𝐬) is the attribute value dependent to location s and D is 

the domain of the study [3].  

Spread of an infectious disease, crime incidences in a district, plant scattering in a forest and 

earthquakes occurred in a fault zone are some examples that can be given for a spatial point 

pattern.  

There are three types of spatial point patterns. These are clustered, regular and complete 

spatial random patterns. Diggle [1] described complete spatial random pattern as an unreachable 
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standard. It plays an important role for spatial point pattern analysis and serves as a null 

hypothesis for spatial point patterns. Clustered and regular patterns are the deviations from 

complete spatial random pattern. If a pattern is completely random, further analysis is not needed 

in most cases [1,3]. Spatial point patterns types are illustrated in Figure 1.  

 

 
 

Figure 1. Spatial point pattern types. 

 

Intensity can be spatially varying or constant over a study region. Complete spatial random 

pattern is the outcome of constant intensity (homogenous) over a study region. Moreover, 

intensity could be considered as abundance, density, prospectivity and risk [4].  

Gatrell implies [5] that estimating intensity of a point pattern resembles to estimation of 

bivariate probability density. Intensity estimation is the primary objective in most analysis of a 

spatial point pattern. Schabenberger & Gotway [3] state that even for a complete spatial point 

pattern resulted from a homogenous poisson process, it is still useful to estimate intensity for 

dependency (second-order properties of a point process) structure of the pattern.  

There are many methods such as kernel density estimation, adaptive smoothing, tessellations 

and quadrat counting for estimation of intensity for a spatial point pattern. Gatrell et al. [6] 

reviews methods like kernel density estimation and adaptive smoothing for exploration and 

modelling of spatial point pattern in epidemiology stating that quadrat counts and nearest 

neighbor methods fail to consider spatial variation in population density. 

Stock and Smith [7] compare earthquake occurrence distributions by using adaptive kernel 

estimation and kernel estimation with a global bandwidth for New Zealand and Australian 

earthquake catalogs.  

Stock and Smith [8] compare the kernel functions and global and adaptive kernel estimations 

for the New Zealand and Australia earthquake catalogs.  

In this study, kernel estimations of intensities for a region in the North Anatolian Fault Zone 

are given. In intensity calculations, both global and adaptive bandwidths for Gaussian kernels are 

employed. In addition, the fit of these estimations are compared. Study is based on the choice of 

the optimum bandwidth and the best intensity estimation method. The study is organized as 

follows. Initially, a brief methodology is given for kernel density estimation and intensity of a 

point pattern. Then the properties of the data is explained. Finally, results are discussed for the 

given earthquake catalog. 
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2. METHODOLOGY  
 

Intensity of a spatial point process is defined below as a limit of a counting process and it is 

the average number of points per unit area (volume) whereas ds is the infinitesimal area centered 

at point s in the study domain [3]. 
 

𝜆(𝒔) = lim𝑣(𝑑𝒔)→0
𝐸(𝑁(𝑑𝒔))

𝑣(𝑑𝒔)
                                                                                                             (1) 

 

If a point process X has a homogenous intensity, for a region B in the study domain expected 

number of points falling into region B is proportional to the area of B such as  𝜆|B|. The value of 

𝜆 depends on the measurement unit. In such a case the estimation of unbiased intensity is given 

below like the calculation of sample mean [4]. 
 

𝜆̅ =
𝑁(𝐵)

|𝐵|
                                                                                                                                          (2) 

 

For spatially varying intensity expected number of points depends on intensity function and 

expected number of events for a small area in the contiguity of location is equal to 𝑎𝜆(𝑢). 

Expected number of events in a domain B is formulated as integral of intensity function in this 

domain. It is given in below equation [4].  
 

𝐸(𝑁(𝐵)) = ∫ 𝜆(𝑢)𝑑𝑢
𝐵

                                                                                                                   (3) 
 

In some cases, the events are located only in the edges of the domain. Such kind of point 

processes do not have a closed form of intensity function. Examples of this situation can be seen 

in seismicity, events can occur on the edges of a study region. Therefore, a more general approach 

to intensity is taken into account assuming the expected number of events for a point process is 

known. It is given in equation (4). 
 

Ʌ(𝐵) = 𝐸(𝑁(𝐵))                                                                                                                           (4) 
 

Quadrat counting is a simple method for estimating intensity of spatial point patterns. It can 

be applied to rectangular shaped or regular shaped domains easily by dividing the whole domain 

into quadrats of equal area. Afterwards, number of events in each quadrat are obtained and are 

divided to its area for the calculation of intensity for each quadrat. Quadrats are formed by 

dividing the sides of the domain into specific numbers. There is also a test for complete spatial 

randomness designed by inspiration from the idea of including approximately even number of 

events for each quadrat. It is not a trustworthy method because it is highly affected from the 

subjective choice of the quadrat number. 

Kernel density estimation is a non-parametric method to estimate univariate and multivariate 

probability densities from the data itself. It has some advantageous of being independent from 

assumptions of parametric estimation however there are also problems of determining optimum 

bandwidth usually.  

Kernel density estimation is an idea of counting the number of events per area with a moving 

quadrat or window instead of fixed number of regular grids. This is done by a kernel function 

with a bandwidth scanning the area proportionally to its size. A kernel function must satisfy the 

property given in (5) along with the condition of taking non-negative values. To sum up it must 

be a probability density function. 
 

∫ 𝐾(𝑥)
𝑅2 𝑑𝑥 = 1                                                                                                                              (5)  

 

Two dimensional kernel density estimator is given with a fixed bandwidth below in equation 

(6) where h is the bandwidth of the kernel function K, n is the number of earthquakes, x is the 

location of any location in the study area and 𝐱i is the location of each earthquake [9]. 
 

𝑓(𝐱) =
1

𝑛ℎ2
∑ 𝐾 {

1

ℎ
(𝐱 − 𝐱i)}𝑛

𝑖=1                                                                                                       (6)  
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The critical point is the choice of the bandwidth in kernel density estimation rather than the 

choice of kernel density function. They mostly reflect the spatial earthquake epicenter distribution 

[7]. 

Gaussian kernel is given in equation (7) and is chosen as a kernel function since the objective 

of the study is to compare intensity estimation methods and also the kernel function choice is not 

a critical choice. 
 

𝐾(𝐱) =
1

2𝜋
exp {−

(𝐱−𝐱𝑖)2

2
}                                                                                                               (7)  

 

Earthquakes higher than a certain magnitude (especially big earthquakes) generally have a 

clustering display because of foreshock, aftershock and swarm type of activity. Therefore, there 

are intensity higher zones compare to overall study region. Estimation of intensity with a fixed 

bandwidth kernel estimator might oversmooth these regions if a larger bandwidth is chosen. 

Moreover, estimated density can be too spiky for a too small bandwidth.  

Adaptive kernel estimation or adaptive smoothing is given below as a three-step procedure 

[7,9]. 
 

𝑓1(𝐱) =
1

2𝜋𝑛ℎ1
2 ∑ exp {−

(𝐱−𝐱𝑖)2

2ℎ1
2 }𝑛

𝑖=1           

ℎ2(𝐱) = √
µ

𝑓̂1(𝐱)
                                                                                                                                (8)  

𝑓2(𝐱) =
1

2𝜋𝑛ℎ1
2 ∑

1

ℎ2(𝐱𝒊)2 exp {−
(𝐱−𝐱𝑖)2

ℎ2(𝐱𝒊)22ℎ1
2}𝑛

𝑖=1   
 

In equation (8), ℎ1is a global parameter and µ is the global mean of earthquake activity per 

area. In the first step a pilot estimate for the 𝑓1(𝐱) is calculated using a kernel density estimation. 

It can be calculated also by using another method like nearest neighbor method. In the second step 

a local bandwidth is determined. In the third step adaptive density estimation is defined to 

estimate distribution of earthquake occurrences.  

The main difference of adaptive kernel density estimation with a global bandwidth kernel 

density estimation is the bandwidths’ property of being a function of the coordinates [10]. 

Baddeley et. al. [4] defines the relationship between intensity and probability density as 

normalized intensity is the probability density. The estimation of intensity function is given in 

equation (9) where 𝑒(𝑢) is the edge correction factor given as: 
 

(𝑢) = ∫ 𝐾(𝑢 − 𝑣)𝑑𝑣
𝑊

 . 

𝜆̂(𝑢) =  
1

𝑒(𝑢)
∑ 𝐾(𝑢 − 𝑥𝑖)𝑛

𝑖=1                                                                                                            (9) 
 

Earthquakes are generally occurred in specific points of a fault line and thus the underlying 

mechanism would be an inhomogeneous poisson process with a varying intensity function. For 

this purpose, a likelihood cross validation is suggested to get an optimum bandwidth for a kernel 

density estimation [11]. 

Likelihood cross validation (LCV) is given for a gaussian kernel in equation (10) and 

bandwidth sigma is selected according to this method. 
 

LCV(𝜎) = ∑ 𝑙𝑜𝑔𝜆̂−𝑖𝑖 (𝑥𝑖) − ∫ 𝜆̂(𝑢)
𝑊

𝑑𝑢                                                                                      (10) 
 

In addition, a criterion for a better fit of an intensities is necessary to find out whether a fixed 

bandwidth or an adaptive bandwidth is superior to each other. However, it is still a problematic 

issue without one proper criterion. It is mostly left to the researchers to select the method that 

produce a good picture of the phenomenon. Moreover, a point pattern log-likelihood based 

criterion similar to equation (10) may be considered as the difference of sum of the log intensity 

at each point and the integral of the pixel image produced after fitting. 
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3. DATA 

 

Data is taken from Republic of Turkey Prime Ministry Disaster and Emergency Management 

Presidency 1900-20xx earthquake catalog [12].  

Cutoff magnitude is selected 4 in this study within a rectangular region between 30º-40º 

longitude and 39º- 42º latitude in 1900-2016 time period. This region includes the part of a North 

Anatolian fault line. There are 802 earthquakes in the given space and time domain. 

The spatial pattern of earthquakes is given in Figure 2. As seen from the figure too, there is a 

high intensity of earthquake occurrences in the west side of the study region. In addition, it may 

seem that the earthquake pattern has a varying intensity over the region.  

 

 
 

Figure 2. Earthquake pattern higher than magnitude 4 between years 1900-2016. 

 

Magnitude distribution of the earthquakes more than magnitude 4 are illustrated in Figure 3. It 

can be inferred that big earthquakes only occur in some regions over the region. Also, the 

locations of the big earthquakes may be related to the closeness of the fault line. 

 

 
 

Figure 3. Magnitude distribution over the region. 
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In Figure 4, the active faults of Northern Anatolian Fault zone are given to support our claims 

about big earthquakes’ occurrence locations.  

 

 
 

Figure 4. Northern Anatolian Fault Zone [13] 

 

4. RESULTS 

 

Intensities over the region are calculated by using “spatstat” and “sparr” R packages [4,10]. 

The edge corrected intensity estimation is applied to the earthquake pattern. In calculation process 

of the intensities by using kernel functions, the domain is divided into 128×128 pixels. 

Quadrat counts of the pattern are given for 1º×1º in Figure 5. It is observed that the bottom 

right quadrat and middle left quadrats has more events compare to other quadrats. 

 

 
 

Figure 5. Quadrat counts of earthquake occurrences. 

 

Pixel images of quadrat counts are given in Figure 6 for comparing subjective choice of 

number of quadrats. 
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Figure 6. Intensities obtained through different number of quadrats. 

 

It can be easily inferred from Figure 7, when the number of quadrats increases, intensity 

differences between quadrats increase too. Intensity is oversmoothed for lesser number of 

quadrats while it is undersmoothed for a higher number of quadrats. 

In Figure 7, intensity estimation for two arbitrary different bandwidths are obtained. Indeed, 

for a large bandwidth the intensities are oversmoothed for the study region. A lower bandwidth of 

σ=0.5 enables high intensity zones being narrowed. 

 

 
 

Figure 7. Intensity estimations via arbitrary bandwidths. 
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In Figure 8, earthquake pattern is superimposed to the pixel images of intensities in Figure 7. 

It seems that the pattern and intensity images has a better match for bandwidth σ=0.5. 

 

 
 

Figure 8. Earthquake patterns with pixel images of intensities. 

 

Pixel image of intensities and intensities with the superimposed pattern is given in Figure 9 

for a bandwidth σ which is obtained through likelihood cross validation. According to likelihood 

cross validation method bandwidth σ is found 0.17 for an assumed inhomogeneous point pattern. 

Intensity increase in intensity high zones and intensity high zones are getting narrowed indeed. 

 

 
 

Figure 9. Earthquake pattern with pixel images of intensities obtained by using optimum 

bandwidth through LCV. 
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In Figure 10, intensity estimation of earthquake point pattern is given for the specified 

longitudes and latitudes. A pilot estimate which is obtained through likelihood cross validation is 

chosen to estimate intensities over the region via adaptive smoothing. Intensities rise up 

dramatically for intensity higher zones with adaptive smoothing in contrast to intensity estimation 

with a fixed bandwidth. It had better to interpret these dramatic intensity changes both by 

examining with fixed bandwidth estimation and adaptive bandwidth estimation together. In 

addition, it is necessary to give the varying bandwidths along the study region to understand how 

the adaptive smoothing works.  

 

 
 

Figure 10. Intensity estimation via adaptive bandwidth in given coordinates. 

 

The varying bandwidths and the adaptive estimation of intensity of the earthquake pattern are 

given in Figure 11 together. It is seen that highly-densed areas have lower bandwidths when in 

low-densed areas have higher bandwidths for adjusting the degree of smoothing according to 

them. 

 

 
 

Figure 11. Varying bandwidths together with the adaptive smoothing. 
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In Figure 12, pixel images of two intensities with superimposed pattern is given for 

comparison purposes of two different estimations which are obtained through a fixed bandwidth 

and varying bandwidth. There is a small difference in high intensity zones if it is examined in 

terms of area. However, the maximum intensity of the study domain is doubled in contrast to 

intensities which are obtained through fixed bandwidth. 

 

 
 

Figure 12. Comparison of intensities with superimposed point pattern via two different 

bandwidths. 

 

Table 1. Model selection criterion 
 

 Difference 

Kernel function with a varying bandwidth 36618.01 

Kernel function with a fixed bandwidth 41642.35 

 

In Table 1, a value depending on a criterion for model goodness of a fit based on point 

process likelihood is given. The differences are not very high. Varying bandwidth performs a 

better fit for the intensity of the concerning earthquake pattern and one can choose adaptive 

smoothing to estimate the intensities over the study region for the given pattern. 

 

 5. DISCUSSION 

 

Bandwidth selection for a point pattern and the selection of the best model to estimate 

intensity of point pattern is still an ongoing issue. There are methods to estimate the intensity, 

which have both advantages and disadvantages. Kernel estimation with different kind of 

bandwidths and quadrat counting is some of them. Quadrat counting is a simple method which is 

dramatically affected by the choice of the quadrat number. Optimum bandwidth obtained by 

likelihood cross validation criterion and varying bandwidths obtained by adaptive kernel 

estimators give better pixel images of intensities compare to pixel images obtained through 

arbitrary chosen bandwidths. A criterion based on a point pattern likelihood suggests to use 

adaptive kernel estimators to estimate the intensity. However, the higher intensity zones are 
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approximately similar while the intensities in these zones are doubled in contrast to kernel 

estimation with a fixed bandwidth. Therefore, they can be both chosen to model intensities. 

Earthquakes that are considered as big, devastating or upper than middle value in magnitudes are 

tend to cluster in small zones because of mainshock-aftershock relationships. As a result, there are 

highly-densed locations and low-densed locations. It is better to consider adaptive bandwidth to 

discriminate these zones. In addition, an optimum fixed bandwidth can be chosen for these type of 

patterns with varying intensities along the study region.   
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