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ABSTRACT  

The heat transfer, friction factor, pressure difference, Nusselt number of a helical coil tube using variable 

pressure and velocity during inlet for various values of Dean number [ratio of coil diameter (D) to tube diameter (d)] 

has been studied using commercially available computational tool. A validation is performed using the computational 

tool through the experimental data and it was observed that the results are in good agreement. The helical coil of 0.3 

m diameter with four (4) turns of inner diameter 0.01 m with length 3.77 has been modelled, meshed and analyzed 

for both laminar and turbulent flows of constant wall temperature and heat flux. A grid independence test is also 

performed. The results show that increase in Dean number increases the heat transfer of the helical tube. The 

increases in pressure have less effect on heat transfer during laminar flow while adverse effect can be observed 

during turbulent flow.  

 

Keywords: Dean Number, Heat Transfer, Friction Factor, Helical Tubes, Nusselt Number 
 

INTRODUCTION  

Heat exchangers were an inevitable component in modern mechanical systems. In order to effectively use 

energy being generated through various methods, various heat exchangers in various forms like, economizer, air 

preheater, super heater, waste heat recovery boilers, etc were used. Even though heat exchangers serves the purpose 

of transferring heat from one fluid to another, lack of effective heat transfer results in loss of heat from the fluid and 

hence useful energy is being wasted. For this reason, various methodologies were being studied and adapted in 

increasing the heat transfer effectiveness of various heat exchangers. In many cases where experimental study is not 

feasible or economically viable, numerical study have been forecasted by many researchers to be a useful tool. The 

thermal performance of vertical spiral ground heat exchangers (GHE) for extracting ground source heat using a heat 

pump was performed for nine (9) spiral GHE and two (2) u-tube GHE with ore holes, using experimental method 

and numerical method. The experiment was performed for all the test samples for 150hrs. The results of the 

experiments were compared with predicted numerical results using commercially available solver COMSOL [1]. 

Another combined experimental and numerical approach was performed for investigating the heat transfer and 

friction flow characteristics of three (3) mini channel regenerative heat exchangers with hydraulic diameter of the 

channels as 1.5, 1 and 0.5 mm. The study was conducted for measuring the transient thermal responses and pressure 

drop at the outlet and inlet of each of the heat exchangers. The authors concluded that heat exchanger with 0.5 mm 

have the highest interstitial coefficient of heat transfer, which can be explained due to the increase in the specific 

surface area of the heat exchanger [2]. Other combined study suggests that desiccant coated heat exchanger have 

reduced heat transfer coefficient of 30%, as compared to conventional heat exchangers during heat transfer between 

air and water. The researchers suggested that the reduction in the heat transfer is due to the resistance provided by the 

desiccant coating [3]. Corrugated inner tubes with pitch of 5mm and depth 1.5mm have been found to have the 

highest heat transfer and Nusselt number subjected to different flow rates of 0.03 to 0.13 kg/s and 0.04 to 0.14 kg/s 

for cold and hot fluids respectively. The experimental result is verified by the prediction of artificial neural network 

(ANN) which have R2 values of 0.99999, 0.999997 and 0.999993 for heat transfer, Nusselt number and Reynolds 

number respectively [4]. 
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The thermo hydraulic performance of air to water heat exchange on a double pipe heat exchanger with 

helical fins (with fin spacing in the range of 0.05 to 2 m) was studied using commercially available numerical solver 

ANSYS FLUENT [5]. The study have concluded that helical fin with fin spacing of 0.1 m provides the optimum 

thermo hydraulic performance. The study also denotes the improvement of compactness and overall performance 

with use of helical fins. Another study using the software proposed that helical wire inserts can increase the Nusselt 

number by 1.77 times. Some studies also suggested that circular obstacles in heat exchangers can increase the overall 

performance, compared to other form of obstacles like rectangular or triangular [6-7]. A study using CFD-segmented 

heat exchanger model using open sourced solver Open FOAM have recommended that velocity scaling between 

different fin geometries must be avoided. The maximum capacity loss observed was 9.75% from bare-tube heat 

exchangers. They have concluded that the severity of the Mal-distribution of the refrigerant leads to larger capacity 

loss in heat exchangers [8]. Other applications of CFD can be found in solving complex equations and geometry of 

internal combustion engines. CFD solver such as Forte Reaction Design (Chemkin) has been used for studying 3-

dimension simulations of reactions. Engine emissions simulations were effectively being predicted using numerical 

solver also [9-10]. Other studies on heat exchangers using commercial codes have been extensively studied by 

various researchers [11-18 16] for different applications. They have found that commercial CFD codes and tools can 

be used for studying the characteristics of heat exchangers. Other study involves thermal analysis and multi 

dimensional modeling of various thermal systems including IC engines, emission dispersion studies, slurry flow, 

flame study thermal comfort etc. [17-33]. 

In view of the above literatures, the authors have found that there are fewer studies in the combined effect of 

Dean number, velocity and pressure inlet with conditions of constant wall temperature and heat flux on the heat 

transfer, friction factor, pressure difference and Nusselt number of a helical tube. Hence a correlative study on the 

combined effects has been studied numerically using commercially available tool, ANSYS. To increase the accuracy 

in predicting the results, a validation has been performed using experimental results and the prediction holds good 

for both values of heat transfer co-efficient and Nusselt number. 
 

METHODOLOGY 
Model Preparation and Geometry Creation 

The helical tube has been modeled using commercial computational tool, ANSYS for which the dimensions 

of 0.3 meter, 3.77 meter and 0.01 meter for diameter of coil (D), length of tube (L) and diameter of tube (d), has been 

chosen for the study as shown in Fig. 1, since the present study will be helpful in analyzing compact heat exchange 

systems. During the process of the study, four (4) other models were also created by changing the value of ‘d’, 

keeping constant value of D and L in order to effectively study the effect of the change in dean number (D/d) on the 

heat transfer and fluid flow characteristics. The circles are initially created and SWEEP procedure is followed for 

generating the three dimensional model. The number of turns has been specified to be as four, while defining the 

body type to be fluid for outer and innermost tube and solid for middle tube. The domain or the cell zone conditions 

of the model have been defined as water- fluid & copper- solid. The tube of the heat exchanger is made up of copper 

to facilitate maximum heat transfer due to its superior thermal conductivity. The properties of copper remained 

constant throughout the analysis.  

 
Figure 1. Helical coiled tube designed using commercial computational tool  
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The model is meshed using rectangular cells and grid independence test (GIT) was conducted on the model 

while considering the model with no cells. Fig. 2 shows the meshing of the model in the computational domain.  
 

 

Figure 2. (a) Grid of the computational domain and (b) frontal view of the meshing  
 

Grid Independence Test (GIT) 
Grid independence tests are one of the most vital procedures which are mandatory in numerical problems, 

for checking the independence of the final results to the number of grids. Since, most of the results being generated 

are a function of the number of grids being generated; the results vary in accordance to the grids being specified. 

Hence, the minimum number of grids after which there is no change in the results of the problem is generally 

referred to as optimum grid size. At this stage, the results are independent of the grids. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. (a) GIT based on inlet pressure of hot fluid, (b) GIT based on outlet temperature of hot fluid, (c) GIT based 

on outlet temperature of cold fluid 
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In the present study, initializing from D/d= 10 with assumptions of insulated outer wall, inlet velocity of hot 

fluid as 1.5072 m/s (Re= 10000), temperature at 355K and variation of grid size from 65770 to 139770, the GIT is 

performed based on inlet pressure of hot fluid, outlet temperature of hot fluid and  outlet temperature of cold fluid. 

From Fig. 3 (a), it can be observed that the results are independent after 137617, which shows that the results are 

independent of the grid after the specified value. Also from Fig. 3 (b) and (c), it can be seen that the results are 

independent after 138726 number of divisions, showing that the results are independent of the grid. 

 

Governing Equations and Boundary Conditions 
The models were analyzed using constant wall heat flux (20000 W/m2) and temperature (300 K) for both 

laminar and turbulent flows. The working fluid is assumed to be water and the corresponding properties of water are 

shown in Table.1 below. The initial temperature and pressure of the fluid are taken to be 360 K and 1 atm. 

 

Table.1 Properties of the working fluid: water 

Sl. No. Particulars Value 

1. Density (ρ) 1000 kg/m3 

2. Thermal Conductivity (k) 0.6 W/m-K 

3. Specific heat (Cp) 4.182 kJ/kg-K 

4. Dynamic viscosity (μ) 0.001 kg/m-s 

 

The following are the boundary conditions for the present study: 

(a) The inlet velocity of the fluid are assumed to be 0.6 m/s, 0.8 m/s, 1 m/s and 1.2 m/s. 

(b) The inlet gauge pressure are assumed to be 5000 N/m2, 10000 N/m2, 15000 N/m2 and 20000 N/m2 

The flow was taken to be steady and incompressible and the density of the fluid is constant throughout the 

computational domain. The effect of conduction on the tube material is small. SIMPLE algorithm is used for the 

pressure correction approach and the relaxation factor has been kept to its default values (Pressure: 0.3; Momentum: 

0.7; Energy: 01; Density: 01; Body force: 01). k-epsilon model is being used as the turbulence model. The governing 

equations for the study we shown in equations (1) to (7) 

Continuity equation  

 

     
0

u v pw

x y z

   
  
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Navier-Stokes field equation (Only equation is given below) 
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Energy equation  
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where ∅ is the Rayleigh dissipation function and is given by 
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Critical Reynolds number as per the correlation given by Schmidt (1967) 
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Validation of Computational Tool 

A validation is performed with the computational tool and using the experimental data from Verma T. N et 

al. (2017) [4]. Using the geometry of the experimental analysis, 

standard tube of Dinner (inlet) = 25.4 mm, Dinner (outlet) = 31.4 mm, Douter (inlet) = 50.8 mm and Douter (outlet) 

= 55.8 mm with length of pipe as 2000 mm, variation of Reynolds number between 5000-17,000, galvanized iron as 

tube material, mass flow rate of hot fluid and cold fluid were taken as 0.04-0.14 kg/s & 0.03-0.13 kg/s respectively, 

an identical model is constructed on the computational tool. Standard k-ɛ model is used for the numerical work.   

The results of variation of (a) heat transfer co-efficient and (b) Nusselt number with Reynolds number is 

shown in Fig. 4. From the figures, it can be seen that the results of the computational tool is quite close to that of the 

experimental results. Hence the results of both experimental and computational are in good agreement. Thus, the 

computational tool can be effectively used for the study. 

 

(a) (b) 

Figure 4. Validation of experimental and numerical results for (a) heat transfer coefficient and (b) Nusselt number 

with Reynolds number 
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RESULTS AND DISCUSSION 

Pressure and Temperature Contours 
 

 
Figure 5. (a) Pressure and (b) temperature contour distribution of tube for constant wall temperature 

 

Fig. 5 shows the distribution of pressure and temperature contours respectively for the constant wall 

temperature at inlet velocity of 0.6 m/s and turbulent flow. The Fig 5 (a) shows that the pressure distribution 

(pascals) on the helical tubes are more on the upper region, while less effect is being observed in the lower regions. 

Again, from Fig. 5 (b), the temperature (kelvin) contour shows that the whole length of the tube is subjected to the 

heat. 

 

Variable Pressure Inlet and Constant Wall Temperature 

 

 
Figure 6.  Pressure inlet-constant wall-laminar 

 

Fig. 6 shows the variation of the variation of heat transfer coefficient, Nusselt number and Pressure with 

Dean number for different pressure inlet, constant wall temperature and laminar flow. From the figure it can be noted 

that there is slight change in the Nusselt number with change in the inlet pressure in Laminar flow. The heat transfer 

is directly proportional to the Dean number and hence, maximum heat transfer is observed at maximum value of 

Dean number, while gradual decrease in Nu is observed at all values of pressure with increasing Dean number. Less 
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change is observed with variation in inlet pressure, though the overall effect in the increase of pressure difference is 

observed with increase in Dean number during laminar flows. 

 

 
Figure 7.  Pressure inlet-constant wall-turbulent 

 

The variation of heat transfer coefficient, Nusselt number and Pressure with Dean number for different 

pressure inlet, constant wall temperature and turbulent flow is shown in Fig. 7. From the graph, is can be seen that 

there is increase in Nusselt number with increase in Dean number and pressure. Accordingly, the heat transfer 

coefficient also increases with increase in inlet pressure. Thus, helical tubes will have higher performance, with 

increasing Dean number. In turbulent flow conditions, there is increase in all the parameters under study with 

increase in Dean number. Heat transfer co-efficient increases with increase in pressure inlet while, reduction in 

Nusselt number is observed. Increase in pressure difference with increase in inlet pressure is observed and for all 

values of inlet pressure, the pressure difference increases with Dean number. 

 

Variable Pressure Inlet and Constant Heat Flux 

 

 
Figure 8.  Pressure inlet-constant heat flux-laminar 

 



Journal of Thermal Engineering, Research Article, Vol. 6, No. 2, Special Issue 11, pp. 128-139, March, 2020 

135 

 

 
Figure 9.  Pressure inlet-constant heat flux-turbulent 

 

The variation of heat transfer coefficient, Nusselt number and Pressure with Dean number for different 

pressure inlet and constant heat flux is shown in Fig. 8 (laminar flow) and Fig. 9 (turbulent flow) respectively. The 

computational study shows higher value of Nusselt number in helical tubes, as compared to straight tubes. During 

constant heat flux conditions, in both laminar and turbulent flow conditions, the heat transfer co-efficient and 

pressure difference increases with increase in Dean number. In laminar flow, it can be observed that the Nusselt 

number for variable values of pressure inlet have less significant effect at lower Dean number. An increase in Nu is 

observed in increasing Dean number. 

 

Variable Velocity Inlet and Constant Wall Temperature 

 

 
Figure 10.  Velocity inlet-constant wall temperature-laminar 

 

The variation of heat transfer coefficient, Pressure difference, Nusselt number and friction factor with Dean 

number at variable velocity and constant wall, laminar flow is shown in Fig. 10. There is slight change in the heat 

transfer coefficient, with increase in Dean number. It can be observed that there is increase in pressure differences 

with the flow with increasing Dean number and velocity of flow. From the graph between Nusselt number and Dean 

number, it can be noted that the differences in the decrease in the Nusselt number due to increasing Dean number for 

all flow of different velocity is identical. This shows that the changes in the Nusselt number are very low, when 

increasing Dean number and variation of flow velocity. At lower flow velocity it can be observed that the effect of 

Dean number is very less, while on the contrary very little change of from 5675 W/m2K at D/d of 12 is seen to 

increase up to 6017 W/m2K at D/d of 20, while the value of heat transfer co-efficient is observed to be about 6176 

W/m2K at D/d of 30. A similar reduction trend in Nu is observed while increasing the D/d ratio for all inlet velocity 

values. While the friction factor increase with increase in flow velocity and decreases with increase in Dean number 

at laminar flow with constant wall temperature. 
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Figure 11. Velocity inlet-constant wall temperature-turbulent 

 

Fig. 11 shows the variation of heat transfer coefficient, Pressure difference, Nusselt number and friction 

factor with Dean number at variable velocity and constant wall, turbulent flow. From the graph it is clear that there is 

increase in Nusselt number, with increase in Dean number. Similar trend like laminar flow can also be observed in 

turbulent flow for variable flow velocity at constant wall temperature, but Nu increases with increase in Dean 

number and decreases with increasing flow velocity. 

 

Variable Velocity Inlet and Constant Heat Flux 

 

 
Figure 12. Velocity inlet-constant heat flux-laminar 

 

Fig. 12 shows the variation of Dean number with heat transfer coefficient, Pressure difference, Nusselt 

number and friction factor at variable inlet and constant heat flux with laminar flow. It can be observed that the heat 

transfer co-efficient increases with increase in Dean number for all values, while Nusselt number decreases with 

increase in Dean number. The increase in velocity increases the parameters like heat transfer co-efficient and 

pressure difference. Lower values of Nusselt number and friction factor is also observed with increase in pressure of 

the fluid flow. The effect of variable velocity inlet at constant heat flux and laminar flow for heat transfer co-efficient 

is seen to be negligible since at all velocity profiles, the heat transfer co-efficient is almost constant, though it 

increase with increase in Dean number. The friction factor during laminar flow decrease with increase in velocity of 

flow, yet increase with increasing Dean number. 



Journal of Thermal Engineering, Research Article, Vol. 6, No. 2, Special Issue 11, pp. 128-139, March, 2020 

137 

 

 
Figure 13. Velocity inlet-constant heat flux-turbulent 

 
The variation of heat transfer coefficient, Pressure difference, Nusselt number and Friction factor at variable 

inlet and constant heat flux with turbulent flow with Dean number is shown in Fig. 13. It can be observed that the 

increase in Dean number results in increase in corresponding values. The increase in velocity increases the heat 

transfer co-efficient and pressure difference. But the Nusselt number decreases with decrease in velocity. Similar 

trend can be observed for Friction factor also. 

 

CONCLUSION 

Heat transfer phenomenon and fluid flow is studied using commercially available computational tool. The 

corresponding effects of inlet mass flow rate, pressure at inlet and ratio of curvature (Dean number) is studied. The 

following conclusions are drawn from the study: 

 The results of Nusselt number largely depends on the Dean number. The increase in Nusselt 

number is observed with the increase in Dean number and mass flow rate. 

 The friction factor is more for Turbulent flow, as compared to laminar flow in all cases. 

 The computational tool can be used for studying complex and expensive study, which are rather 

undesirable for experimental study. 

 

NOMENCLATURE 

Ac  flow area, m2  

As  surface area, m2  

Cp  specific heat, J/kgK  

d  diameter of pipe, mm  

dh  hydraulic diameter, mm  

D  coil diameter, mm  

De  Dean Number  

f  friction factor  

G  mass velocity, m/s  

h  heat transfer coefficient, W/m2K  

H  pitch of coil, mm  

j  Colburn factor  

k  thermal conductivity, W/mK  

L  length of pipe, m  

m  mass flow rate, kg/s  

n  number of turns  

Nu  Nusselt Number  

p  pressure, N/m2  

Pr  Prandtl Number  

Q  heat flux, W/m2  

Re  Reynolds Number  
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St  Stanton Number 

T  Temperature, K 

u, v, w  velocity along X-axis, Y-axis and Z-axis, m/s  

V  flow velocity, m/s  

Vs  wetted volume, m3  

x, y, z  coordinates  

X  body force 

 

Greek symbols 

 

β  surface area density, m2/m3 

ρ  density, kg/m3  

μ  dynamic viscosity, kg/ms 

φ  Rayleigh dissipation factor 

 

Subscripts 

cr  critical  

d  diameter  

f  fluid  

w  wall 

 

REFERENCES 

[1] B BD. Experimental and computational investigation of the spiral ground heat exchangers for ground source 

heat pump applications Coefficient of Performance. Appl Therm Eng. 2017; 121:908-921. 

doi:10.1016/j.applthermaleng.2017.05.002. 

[2] Alfarawi S, Mahmoud S. Transient investigation of mini-channel regenerative heat exchangers: Combined 

experimental and CFD approach. Appl Therm Eng. 2017. doi:10.1016/j.applthermaleng.2017.07.038. 

[3] Sun XY, Dai YJ, Ge TS, et al. Comparison of performance characteristics of desiccant coated air-water heat 

exchanger with conventional air-water heat exchanger - experimental and analytical investigation Accepted 

Manuscript. 2017. doi:10.1016/j.energy.2017.03.078. 

[4] Verma TN, Nashine P, Singh DV, Singh TS, Panwar D. ANN: Prediction of an experimental heat transfer 

analysis of concentric tube heat exchanger with corrugated inner tubes. Appl Therm Eng. 2017;120. 

doi:10.1016/j.applthermaleng.2017.03.126. 

[5] Maakoul A El, Metoui M El, Abdellah A Ben, Meziane M. Numerical investigation of thermohydraulic 

performance of air to water double-pipe heat exchanger with helical fins. Appl Therm Eng. 2017. 

doi:10.1016/j.applthermaleng.2017.08.024. 

[6] Sharifi K, Sabeti M, Rafiei M, Mohammadi AH, Shirazi L. Computational Fluid Dynamics (CFD) 

Technique to Study the Effects of Helical Wire Inserts on Heat Transfer and Pressure Drop in a Double Pipe 

Heat Exchanger. Appl Therm Eng. 2017. doi:10.1016/j.applthermaleng.2017.08.146. 

[7] Sabek S, Tiss F, Chouikh R, Guizani A. Numerical investigation of heat and mass transfer in partially 

blocked membrane based heat exchanger : effects of obstacles forms. Appl Therm Eng. 2017. 

doi:10.1016/j.applthermaleng.2017.11.019. 

[8] Lee MS, Li Z, Ling J, Aute V. A CFD Assisted Segmented Control Volume Based Heat Exchanger Model 

for Simulation of Air-to-Refrigerant Heat Exchanger with Air Flow Mal-distribution. Appl Therm Eng. 

2017. doi:10.1016/j.applthermaleng.2017.11.094. 

[9] Abay K, Colak U, Yüksek L. Computational fluid dynamics analysis of flow and combustion of a diesel 

engine. Journal of Thermal Engineering. 2018; 4 (2):1878-1895. 
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