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ABSTRACT 

 

In this paper, a notion of soft set-valued maps in Hausdorff fuzzy metric space is introduced. To this end, we 

establish fixed point theorems of set-valued mappings whose range set lies in a family of soft sets. 
Consequently, a few significant fixed point results of fuzzy, multivalued and single-valued mappings are 

pointed out and discussed. Some illustrative nontrivial examples which dwell upon the generality of our 

results are also provided. As an application, sufficient conditions for solvability of multi-valued boundary 
value problems involving both Riemann-Liouville and Caputo fractional derivatives with non-local fractional 

integro-differential boundary conditions are investigated to indicate a usability of the ideas presented herein. 

Keywords and Phrases: Fuzzy set, fuzzy mapping, fuzzy metric space, Hausdorff fuzzy metric, soft set, soft 
set-valued map, e-soft fixed point, fractional differential inclusion. 
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1. INTRODUCTION 

 

The evolvement of fuzzy mathematics started with the introduction of the concepts of fuzzy 

sets by Zadeh [50] in 1965. Fuzzy set theory is now well-known as one of the mathematical tools 

for handling situations that are uncertain in nature. As a result, the theory of fuzzy sets has gained 

great applications in diverse domains such as management sciences, engineering, environmental 

sciences, medical sciences and in other emerging fields. Meanwhile, the basic notions of fuzzy 

sets have been modified and improved in different directions; for example, see [3, 12, 33, 34]. In 

order to apply the idea of fuzzy sets to the classical concepts of metric spaces, Kramosil and 

Michalek [23] introduced the notion of fuzzy metric spaces with the aid of continuous triangular 

norm originally defined by Schweizer and Sklar [44] in their study of statistical metric spaces. 

Thereafter, George and Veeramani [16] modified the idea of fuzzy metric space due to 

Kramosil and Michalek [23], thereby, defining a Hausdorff topology on the new fuzzy metric 

space. Not long ago, Gregori et al. [13] provided many examples of fuzzy metrics in the sense of 

George and Veeramani [16] and also presented some applications of these metrics in the area of 

color image processing. 

                                                 
* Corresponding Author: e-mail: shagaris@ymail.com; tel: +2348036634173  

 

Sigma Journal of Engineering and Natural Sciences 

Sigma Mühendislik ve Fen Bilimleri Dergisi 

 



2084 

 

 

Along the line, the notion of fuzzy metric spaces was first time extended to fixed point theory 

by Grabiec [17]. Thereafter, Gregori and Sapena [15] established another notion of fuzzy 

contractive mapping and studied its application to fixed point theorem in fuzzy metric spaces in 

the sense of both Kramosil and Michalek [23], George and Veeramani [16]. Mihet [27] initiated 

the concept of fuzzy  ψcontractive mapping in non-Archimedean fuzzy metric spaces, which 

extended the category of fuzzy contractive mapping due to Gregori and Sapena [13]. In 2016, 

Gregori and Minana [14] presented a fixed point theorem under fuzzy  ψ-contraction and obtained 

the result of Wardowski [48] as a consequence. Later on, several authors studied different fixed 

point theorems in fuzzy metric spaces, see, for instance, [1, 20, 25, 29, 39, 40, 45] and the 

references therein. In 2004, Rodriguez and Romaguera [42] initiated a method for constructing 

Hausdorff fuzzy metrics on the set of nonempty compact subsets of a fuzzy metric space. This 

development paved fruitful way for the study of fixed point theorems of point-to-set valued 

mappings in the literature; see, for instance, [21,38,46]. 

As a further improvement of the notions of fuzzy sets, Molodstov [34] initiated the concept of 

soft set theory (SST) with the aim of handling phenomena and notions of ambiguous, undefined 

and imprecise environments in which the applications of fuzzy sets have been incapacitated. In 

particular, SST does not need the pre-specifications of a parameter inherent with fuzzy sets, 

rather, it accommodates approximate descriptions of objects. In other words, one can use any 

suitable parametrization tool with the help of words, sentences, real numbers, mappings, and so 

on; thereby, making SST an adequate formalism for approximate reasoning. Consequently, the 

area of applied mathematics gained huge development as a result of the introduction of soft set. 

Recall that in classical mathematics, to describe any system or object, we first construct its 

mathematical model and then attempt to obtain the exact solution. If the exact solution is too 

complicated, then we define the notion of approximate solution. On the other hand, in soft set 

theory, the initial description of an object takes an approximate nature with no restriction, and the 

notion of exact solution is not essential. In [34], Moldstov pointed out several directions for 

possible applications of soft set, such as in smoothness of functions, game theory, Riemann-

integration, operation research, probability and so on. Presently, the concept of soft set is 

receiving more than a handful of extensions in different perspectives. For example, see [7, 10, 32, 

41] and the references therein. 

It is well-known that set-valued analysis has enormous applications in control theory,game 

theory, biomathematics, qualitative physics, viability theory, and so on. With this motivation, 

recently, Mohammed and Azam [30,31] studied the concept of soft setvalued maps, that is, a map 

whose range set lies in a family of soft sets; and introduced the notions of e-soft fixed points and 

E-soft fixed points. They ([30, 31]) applied these new ideas to propose a game theoretic approach 

in decision making problems and in the investigation of existence of solutions to some integro-

differential equations. Moreover, it is shown in [30] that every fuzzy mapping is a special kind of 

soft set-valued map. Since every fuzzy mapping has its corresponding multifunction analogue 

(see [11, Theorem 2.2]), hence, the idea of e-soft fixed point theorems is a generalization of the 

concept of fuzzy fixed points and fixed points of multi-valued mappings. 

To the best of our knowledge, there is no contribution in the literature so far concerning fixed 

point theorems of soft set-valued maps in Hausdorff fuzzy metric spaces. To this end, the main 

aim of this paper is to initiate the idea of e-soft fixed point theorems of soft set-valued maps in 

Hausdorff fuzzy metric spaces. Furthermore, we also present some connections of soft set-valued 

maps with regards to fuzzy and multivalued mappings. Consequently, a few results in the latter 

mappings are deduced as corollaries. In addition, fractional calculus is not only a growing and a 

productive field for its own sake, but rather represents a modern philosophy dealing with how to 

construct and apply certain non-local operators to real-life problems. With this incentive, one of 

our results is applied to analyze some sufficient conditions for the existence of solutions of mixed 

non-convex Riemann-Liouville and Caputo fractional differential inclusions with non-local 
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fractional integro-differential boundary conditions. Finally, nontrivial examples are provided to 

support the hypotheses and usability of our results. 

 

2. PRELIMINARIES 

 

In this section, we recall some requisite concepts of fuzzy sets, fuzzy metric spaces, soft sets 

and soft set-valued maps. Throughout this article, denote by R, R+ and N is the set of real, non-

negative real and natural numbers, respectively. 
 

Definition 2.1. [50] Let X be a nonempty set. A fuzzy set in X is a function with domain X and 

values in [0; 1]. If A is a fuzzy set in X and x  X, then the function value A(x) is called the degree 

of membership of x in A. The -level set of a fuzzy set A, denoted by [A], is defined as 
 

 
 

where M represents the closure of the crisp set M. We denote the family of fuzzy sets in X by 

IX. 
 

Definition 2.2. [18] Let X be an arbitrary set and Y a metric space. A mapping T : X  IY is 

called a fuzzy mapping. A point u   X is said to be a fuzzy fixed point of a fuzzy mapping T if 

there exists an   (0; 1] such that u  [Tu]. 

Definition 2.3. [44] A binary operation *: [0; 1]2  [0; 1] is called a continuous t-norm if ([0; 

1]; *) is an Abelian topological monoid with unit 1 such that a * b  c * d whenever a   c and b 

  d (a; b; c; d  [0; 1]). 
 

Common examples of continuous t-norm are : 
 

(i) a * b = min{a, b} (minimum t-norm). 

(ii) a * b = ab (product t-norm). 

(iii) a * b = max{a + b  1; 0} (Lukasievicz t-norm). 
 

Following Kramosil and Michalek [23, Definition 7], in order to obtain a Hausdorff topology 

on fuzzy metric space, George and Veeramani [16] defined fuzzy metric space as follows. 
 

Definition 2.4. [16] The 3-tuple (X, M, *) is a called a fuzzy metric space if X is an arbitrary 

nonempty set, * is a continuous t-norm and M is a fuzzy set in X2   (0, ) satisfying the following 

conditions: for all x, y, z  X and t, s > 0, 
 

(FM1) M(x, y, t) > 0, 

(FM2) M(x, y, t) = 1 if and only if x = y, 

(FM3) M(x, y, t) = M(y, x, t), 

(FM4) M(x, y, t) *M(y, z, s)   M(x, z, t + s), 

(FM5) M(x, y,.) : (0, )  [0, 1] is continuous. 
 

Remark 2.5. It is noteworthy that 0 < M(x, y, t) < 1 for all t > 0, provided x  y (cf. [28]). 
 

Example 2.6. [16] Let (X, ) be a metric space and a * b = ab (or a * b = min{a, b}) for all a, b 

 [0, 1]. Define M : X2  (0, )  [0, 1] as 
 

 
 

for all x, y  X and t > 0. Then (X, M, *) is a fuzzy metric space. This fuzzy metric M induced 

by the metric  is called the standard fuzzy metric. 
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Example 2.7. [13] Let X be a nonempty set, f : X  + be a one-one function and g : +  + be 

an increasing function. Fix ,  > 0 and define M : X2  (0, )  [0, 1] as 
 

 

for all x, y  X and t > 0. Then (X, M, *) is a fuzzy metric space, where * is the product t-

norm. 
 

Example 2.8. [13] Let (X, ) be a bounded metric space and suppose there exists   (0, ) such 

that g : +  (, ) is an increasing continuous function. Define M : X2  (0, )  [0, 1] by 
 

 
 

Then (X,M, *) is a fuzzy metric space, where * is the Lukasievicz t-norm. For further 

examples of fuzzy metric spaces, we refer the interested reader to Gregori et al. [13]. 
 

Definition 2.9. [16] Let (X,M, *) be a fuzzy metric space. 
 

(i) A sequence {xn}n is said to be convergent to a point x  X, if limn M(xn, x, t) = 1 for 

all t > 0. 

(ii) A sequence {xn}n is called a Cauchy sequence if limnM(xn, xn+p, t) = 1 for all t, p > 

0. 

(iii) A fuzzy metric space in which every Cauchy sequence is convergent is said to be 

complete. 

(iv) A subset A of X is said to be closed if for each convergent sequence {xn} n with xn  A 

and xn x, we have x  A. 

(v) A subset A of X is said to be compact if every sequence in X has a convergent 

subsequence. 
 

Throughout this article,  denotes the family of nonempty compact subsets of X. 
 

Definition 2.10. [21] Let (X, M, *) be a fuzzy metric space. The function M is said to be 

continuous on X2  (0, ) if 
 

 
 

whenever {(xn, yn, tn)} n is a sequence in X2  (0, ) which converges to (x, y, t)  X2  (0, 

); that is, 
 

 
 

Lemma 2.11. [42] If (X, M, *) is a fuzzy metric space, then M is a continuous function on X2  (0, 

). 
 

In 2004, Rodriguez and Romaguera [42] proposed a method for constructing Hausdorff fuzzy 

metric on the set of nonempty compact subsets of a given fuzzy metric space and introduced the 

following definition. 
 

Definition 2.12. [42] Let (X, M, *) be a fuzzy metric space. For each A, B   and t > 0, the 

Hausdorff fuzzy metric HM : K2
X  (0, )  + is defined as 
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Let (X, M, *) be a fuzzy metric space and NX be the family of nonempty subsets of X. For x  

X, A  NX and all t > 0, the function M(x, A, t) is defined as 
 

 
 

Lemma 2.13. [42] Let (X, M, *) be a fuzzy metric space. If A, B   and x  A, then there exists y 

 B such that 
 

 
 

Lemma 2.14. [42] Let (X, M, *) be a fuzzy metric space. Then, for each x  X, B   and t > 0, 

there exists b  B such that 
 

 
 

Let (X, ) be a metric space. For A, B  , the Hausdorff metric H : K2
X + is defined as 

 

 
 

From Proposition 3 in [42], the following relationship between the Hausdorff metric H and 

Hausdorff fuzzy metric HM is established. 
 

Lemma 2.15. [42] Let (X,M *) be a fuzzy metric space, where M is the standard fuzzy metric 

induced by the metric  with a * b = ab. Then, for each t > 0 and A, B  , we have 
 

 
 

Let E be the universal set of parameters, A  E and P(X) denotes the power set of an initial 

universe of discourse X. Molodstov [34] initiated the concept of soft sets with the following 

definition. 
 

Definition 2.16. [34] The pair (F, A) is called a soft set over X under E, where A  E and F is a 

set-valued mapping F : A P(X). 

In other words, a soft set over X is a parameterized family of subsets of X. For each e  E, 

F(e) is considered as the set of e-approximate elements of (F,A). 
 

Example 2.17. Let X = {x1, x2, x3, x4, x5} be the universal set of movies and A ={e1, e2}, where e1 

= 3D image and e2 = not suitable for children under the age of 12. Then F(e1) = {x4, x5} means 

that the only 3D movies are x4 and x5; F(e2) = {x1, x2, x3} means that the movies x1, x2 and x3 are 

not suitable for children aged below 12. 

For further examples of soft sets, the interested reader is referred to [30, 31, 34]. Hereafter, we 

shall represent the family of soft sets over X under E by [P(X)]E. 

Mohammed and Azam [30] introduced the notion of soft set-valued maps and e-soft fixed 

points in the following manner. 
 

Definition 2.18. [30] A mapping T : X  [P(X)]E is called a soft set-valued map. A point u  X is 

said to be an e-soft fixed point of T if u  (Tu)(e), for some e  E. If for each x  X, DomTx = E 
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and u  (Tu)(e) for all e  E, then u is known as E-soft fixed point of T. Here, the domain of T, 

written as DomT, is given as 
 

DomT = {x  X : (Tx)(e)  X, e  E}. 
 

Denote by EFix(T), the set of all e-soft fixed points of a soft set-valued map T. Notice that if T : 

X  [P(X)]E is a soft set-valued map, then the pair (Tx,E) is a soft set over X, for all x  X. 

Throughout this article, the set (Tx)(e) shall be written as (Tex) for all x  X and e  E. 

Several examples of soft set-valued maps have been provided in [30, 31]. However, we give 

additional examples as follows. 
 

Example 2.19. Let X = {1, 2, 3} and E = {1, 2}. Define T : X  [P(X)]E as follows: 
 

 
 

Then T is a soft set-valued map. Notice that 1  (Te1) for e = 1 and 2  (Te2) for e = 2; hence, 

1 and 2 are e-soft fixed points of T. But, 2  (Te2) and 1  (Te1) for e = 1 and e = 2, respectively. 

It follows that 1 and 2 are not E-soft fixed points of T. On the other hand, 3  (Te3) for all e  E; 

thus, the set of all E-soft fixed points of Tis given by EFix(T) = {3}. The map T can be represented 

as in Figure 1. Notice that in Figure 1, the dots represent other subsets of X. 

 

 
 

Figure 1. Graphical representation of the soft set-valued map in Example 2.19 

 

Example 2.20. [30] Let X = [0, 1] and E = [0, 1]. 
 

Define T : X  [P(X)]E by 
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Then T is a soft set-valued map. 

Figure 2 is a three-dimensional (3D) graphical representation of the soft set-valued map in 

Example 2.20. 

 

 
 

Figure 2. Graphical representation of the soft set-valued map in Example 2.20 

 

Example 2.21. Let X =  and E = [0, 10]. Define T : X  [P(X)]E by 
 

 
 

Then T is a soft set-valued map. Notice that u = 0  (Te0) = [0, 1], for e  [0, 4); in this case, 

0 is an e-soft fixed point of T. But 0 is not an e-soft fixed point of T for e  [4, 10], since 0  (Te0) 

= (0, 1]. Furthermore, observe that u = 1/2  (Te1/2) for all e  E; hence u = 1/2 is an E-soft 

fixed point of T. 
 

Remark 2.22. It is well-known that every fuzzy set is a special kind of soft set (see [34]). In like 

manner, every fuzzy mapping A : X  IX can be thought as a soft set-valued map A : X  

[P(X)][0;1], defined by 
 

A(x)(e) = {t  X : (Ax)(t)  e}. 
 

Notice that X   P(X) is embedding by x  {x} and P(X)  IX is embedding by V  XV, for 

every subset V of P(X); where XV is the characteristic function of the crisp set V . Similarly, IX  

[P(X)][0;1] is embedding by B  B, for each B in IX; where 
 

B(e) = {t  X : B(t)  e}. 
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Consequently, every fuzzy mapping is a special kind of soft set-valued map (cf. [30]). 

 

3. MAIN RESULTS 

 

In this section, the notion of e-soft  fixed points of soft set-valued maps in Hausdorff fuzzy 

metric space is initiated. It is further shown herein that a few important fixed point results in the 

setting of point-to-point and point-to-set valued mappings can be deduced as special cases of our 

results. Meanwhile, we start with the following lemmas. 
 

Lemma 3.1. Let (X, M, *) be a fuzzy metric space and HM : K2  (0, )  + be Hausdorff fuzzy 

metric on X. If A, B   and a  A, then there exists b  B such that for all t > 0, 
 

HM(A, B,  t)  sup M(a, b’, t). 

b’ B 
 

Proof. The proof is a direct consequence of the definition of HM. 

Lemma 3.2. Let (X, M, *) be a fuzzy metric space and {xn}n be a sequence in X such that for all 

n  , 
 

M(xn, xn+1, t)  M(xn, xn+1; t). 
 

where   (0, 1) and t > 0. Assume further that 
 

lim M(x, y, jt) = 1, 

                                                              t 
 

for all x, y  X, t > 0 and j > 1. Then {xn}n is a Cauchy sequence in X. 

Proof. The idea follows the techniques of Kiany and Harandi [21, Lemma 1]. 
 

Theorem 3.3. Let (X, M, *) be a complete fuzzy metric space and T : X  [P(X)]E be a soft set-

valued map. Assume that the following conditions are satisfied: 
 

(i) for each x  X, there exists e  E such that (Tex) is a nonempty compact subset of X; 

(ii) limt M (x, y, jt) = 1 for all t > 0 and j > 1; 

(iii) for all t > 0 and x, y  X, there exists   (0, 1) such that 
 

HM((Tex), (Tey, t) (x, y, t),                                                                                                      (3.1) 
 

where 
 

 
 

Then, T has an e-soft fixed point in X. 

Proof. Let x0  X, then by hypothesis, there exists e  X such that (Tex0) is a nonempty 

compact subset of X. Take x1  (Tex0). For this x1  X, by hypothesis, there exists e  E such that 

(Tex1)  . If (Tex0) = (Tex1) for some e  E, then x1  (Tex1) and therefore, x1 is the expected e-soft 

fixed point of T and that ends the proof. So, we presume that (Tex0)  (Tex1) if and only x0  x1. 

Since x1  (Tex0) and (Tex1)  , then by lemmas 3.2 and 2.13, we can find x2  (Tex1) such that 
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If (Tex1) = (Tex2) for some e  E, then x2  (Tex2). It follows that x2 is an e-soft fixed point of 

T and that completes the proof. Similarly, suppose that x1  x2 if and only if (Tex1)  (Tex2). Since 

x2  (Tex1) and (Tex2)  , therefore, by lemmas 3.2 and 2.13, there exists x3  (Tex2) such that 
 

 
 

Continuing this process recursively, we can generate a sequence {xn}n such that xn+1  

(Texn) and 
 

 
 

where 
 

 (3.2) 
 

By Lemma 2.14, (3.2) reduces to 
 

(xn1, xn, t) = min {M(xn1, xn, t), M(xn, xn+1,  t)}.                                                                       (3.3) 
 

Now, we evaluate (xn1, xn, t) under the following cases. 

Case 1: If min{M(xn1, xn, t), M(xn, xn+1, t)} = M(xn, xn+1, t), then, we have 
 

M(xn, xn+1, t)  M(xn, xn+1, t).                                                                                                     (3.4) 
 

Hence, by Lemma 2.11, (3.4) implies that {xn}n
 is a Cauchy sequence in X. 

 

Cae 2 : If min{M(xn1, xn, t), M(xn, xn+1, t)} = M(xn1, xn, t), then, we get 
 

                                                     (3.5) 
 

Since (X, M, *) is a fuzzy metric space, then taking t = t/2 + t/2 and using the inequality given 

in (FM4) on M(xn, xn+p, t), for any positive integer p, we further consider the following subcases 

of Case 2. 
 

Cae 2(i): If p is an odd number, say p = 2m + 1, p  , we have 
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    (3.6) 
 

Using (3.5) on each term of (3.6), we get 
 

 
 

Case 2(ii): If p is even, say p = 2m; m  , then 
 

 
 

Therefore, from Case 1 and Case 2, together with Condition (ii), for all p  , we obtain 
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  This shows that {xn}n
 is a Cauchy sequence in X. Since (X,M, *) is complete, there exists u 

 X such that xn  u as n  . This implies that M(xn, u, t)  1 as n , for all t > 0. 

Now, to show that u is an e-soft fixed point of T, consider 
 

 
 

Using the continuity of the fuzzy metric M in (3.7), we have 
 

 
 

It follows that limn supu’(Teu) M (xn+1, u’, t) = 1. Hence, there exists a sequence {u’n}n
 in 

(Teu) such that 
 

                                                             (3.8) 
 

Consequently, for all n , we get  
 

                                                       (3.9) 
 

Letting n   in (3.9) and using (3.8), we arrive at limn M(u’n, u, t) = 1. This implies that 

u’n  u as n  . Since (Teu)   and u’n is a sequence in (Teu), it follows that u  (Teu) for some 

e  E; that is, u is an e-soft fixed point of T. 

The next Theorem is a simple application Theorem 3.3. 
 

Theorem 3.4. Let (X, M, *) be a complete fuzzy metric space and T : X  [P(X)]E be a soft set-

valued map. Assume that the following conditions are satisfied: 
 

(i) for each x  X, there exists e  E such that (Tex) is a nonempty compact subset of X; 

(ii) limt M(x, y, jt) = 1 for all t > 0 and j > 1; 

(iii) there exist a continuous function  : +   with the property that mint+(t) = 0, 

maxt+ (t) = 1 and ()   for all   (0, 1); 

(iv) for all x, y  X and t > 0, there exists   (0, 1) such that 
 

HM((Tex), (Tey), t)  φ ((x, y, t)) , 
 

where 
 

 
 

Then, T has an e-soft fixed point in X. 

Proof. By condition (iii), we have 
 

 
 

From here, Theorem 3.3 can be applied to find u  X such that u  (Teu) for some e  E. 

Denote the family of functions satisfying Condition (iii) of Theorem 3.4 by . Now, we 

deduce some immediate consequences of theorems 3.3 and 3.4 as follows. 
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Corollary 3.5. Let (X, M, *) be a complete fuzzy metric space and T : X  [P(X)]E be a soft set-

valued map. Assume that the following conditions are satisfied: 
 

(i) for each x  X, there exists e  E such that (Tex) is a nonempty compact subset of X; 

(ii) lim t M (x, y, jt) = 1 for all t > 0 and j > 1; 

(iii) for all x, y  X and t > 0, there exist   (0, 1) and φ   such that 
 

HM((Tex), (Tey), t)  φ (M(x, y, t)) . 
 

Then, T has an e-soft fixed point in X. 
 

Corollary 3.6. Let (X, M, *) be a complete fuzzy metric space and T : X  [P(X)]E be a soft set-

valued map. Assume that the following conditions are satisfied: 
 

(i) for each x  X, there exists e  E such that (Tex) is a nonempty compact subset of X; 

(ii) lim t M (x, y, jt) = 1 for all t > 0 and j > 1; 

(iii) for all x, y  X and t > 0, there exist   (0, 1) such that 
 

HM((Tex), (Tey), t)  (M(x, y, t)) . 
 

Then, T has an e-soft fixed point in X. 

 

3.1. Consequences in fuzzy and multivalued mappings 

 

In this subsection, we will show that there is a link between soft set-valued maps, fuzzy 

mappings and multivalued mappings. 
 

Corollary 3.7. Let (X, ) be a complete metric space and F : X  IX be a fuzzy mapping. Assume 

that the following conditions are satisfied: 
 

(i) for each x  X, there exist (x)  (0, 1] and   (0, 1) such that [Fx](x) is a nonempty 

compact subset of X; 

(ii) H([Fx](x), [Fy](y))   (x, y), 
 

for all x, y  X. Then, there exists u  X such that u  [Fu](u). 

Proof. Let (X, M, *) be a standard fuzzy metric space induced by the metric  with a * b = ab. 

Since (X, ) is a complete metric space, then (X, M, *) is complete. Let A, B be two compact 

subsets of X. Then, applying Lemma 2.14, we have 
 

 
 

Let E = (0, 1] and define a soft set-valued map F : X  [P(X)]E as 
 

F x(e) = {t  X : (Fx)(t)  e} = [Fx]e: 
 

That is, F x(e) = [Fx](x), for each (x) = e  (0; 1]. Therefore, for all x, y  X, we have 
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Therefore, by Theorem 3.3, there exists u  X such that u  F (u) = [Fu](u).                         

Recall that a set-valued mapping S : X   is called a multivalued mapping if S(x)   for each 

x  X. A point u  X is called a fixed point of a multivalued mapping S if u  Su (see [35]). 

 

Corollary 3.8. [35] Let (X, ) be a complete metric space and S : X   be a multivalued 

mapping. Assume that for all x, y  X, there exists   (0, 1) such that 
t 

H(Sx, Sy)  (x; y): 
 

Then, there exists u  X such that u  Su. 

Proof. For each x  X and (x)  (0, 1], consider a fuzzy mapping F : X  IX defined by 
 

 
 

It follows that 
 

[Fx](x) = {t  X : (Fx)(t)  (x)} = Sx. 
 

Consequently, Corollary 3.7 can be applied to find u  X such that u  Su.                              

 

3.2. Consequences in single-valued mappings 

 

In this subsection, we will show that results of the previous section can be applied to derive 

fixed point theorems of some single-valued mappings. 
 

Corollary 3.9. [21, Theorem 2.6] Let (X, M, *) be a complete fuzzy metric space and g : X  X 

be a single-valued mapping. Assume that for each x, y  X and t > 0, there exist   (0, 1), j > 1 

such that the following conditions hold: 
 

(i) M(gx, gy, t)  M(x, y, t); 

(ii) lim t M (x, y, jt) = 1. 
 

Then, there exists u  X such that gu = u. 

Proof. We know that the singleton {x} is a nonempty compact subset of X for every x  X. For e  

E and all x  X, consider a soft set-valued map  : X  [P(X)]E defined by (ex) = {gx}. It 

follows that (ex)   for all x  X. Thus, all the conditions of Corollary 3.6 reduces to the 

hypotheses of Corollary 3.9. Therefore, by applying Corollary 3.6, we can find u  X such that u 

 (eu). The definition of  implies that (eu) = {gu}. Consequently, u = gu. 
 

Remark 3.10. From theorems 3.3 and 3.4, a few more results in the existing literature can be 

deduced as corollaries. For example, the main results of Grabiec [17], Gregori and Sapena [15], 

Saini and Singh [43], Supak et al [38], and some references therein. 

Now, we provide an example to support the hypotheses and generality of our results. 
 

Example 3.11. Let X = {1, 2, 3, 4} and  : X  X   be defined as 
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Then, (X, ) is a complete metric space. Let a * b = ab for all a, b  [0, 1] and 
 

 
 

for all x, y  X and t > 0. Then, we find that (X, M, *) is a complete fuzzy metric space. Take E 

= [0, 1], then for each e  E, consider a soft set-valued map T : X  [P(X)]E defined by 
 

 
 

We see that for each x  X, there exists e  E such that (Tex)  . For all x  X, t > 0 and A  , 

take 
 

M (x, A, t) = sup{ M(x, a, t) : a  A}.                                                                                        (3.10) 
 

In this routine calculation, we shall use Lemma 2.15 and the relation (3.10) in the following 

cases. 
 

Case 1: For x = y, we have H((Tex), (Tey)) = 0, therefore, 
 

 
 

for all t > 0 and  (x, y, t) = min{1, 1} = 1. Hence, 
 

HM((Tex), (Tey), t)   (x, y, t), 
 

for all x, y  X and   (0, 1). In the remaining cases, we take  = 1/2. 
 

Case 2: For x = 1 and y = 4, we have M (1, 4, t) = t / t+7, M (4, (Te4), t) = t / t+3,  

M (1, (Te1), t) = t / t+5, 
 

H((Te1), (Te4)) = H({3, 4}, {1, 2}) = 5. 
 

Therefore, 
 

 
 

and 
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Thus, for all t > 0, we get 
 

 
 

Case 3: For x = 2 and y = 4, we have M (2, 4, t) = t / t+3, M (4, (Te4), t) = t / t+3,  

M (2, (Te2), t) = t / t+3, 
 

H((Te2), (Te4)) = H({3, 4}; {1, 2}) = 5. 
 

Thus, 
 

 
 

and 
 

 
 

Hence, for all t > 0, we have 
 

 
 

Case 4: For x = 3 and y = 4, we obtain M (3, 4, t) = t / t+6, M (4, (Te4), t) = t / t+3,  

M (3, (Te3), t) = 1, 
 

H((Te2), (Te4)) = H({3, 4}, {1, 2}) = 5. 
 

It follows that 
 

 
 

and 
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Consequently, for all t > 0, we have 
 

 
 

Hence, for all x, y  X and t > 0, there exists  = 1 / 2  (0, 1) such that 
 

HM((Tex), (Tey), t)   (x, y, t). 
 

Thus, all the conditions of Theorem 3.3 are satisfied. In this case, the set of all e-soft fixed 

points of T is given by EFix(T) = {3}. 
 

Remark 3.12. Notice that if the soft set-valued map T in Example 3.11 is assumed to be a 

multivalued mapping in the sense of Nadler [35], then taking x = 1 and y = 4, we have 
 

 
 

for all   [0, 1). Therefore, Corollary 3.8 or [35, Theorem 5] cannot be applied in this case 

to obtain a fixed point of T. 

 

4. APPLICATION: AN EXISTENCE THEOREM OF MIXED NON-CONVEX 

FRACTIONAL DIFFERENTIAL INCLUSIONS 

 

Fractional differential equations (FDEs) have enjoyed keen attentions of researchers due to 

their enormous applications in different fields of sciences and engineering. A lot of useful work is 

currently going on in this direction; see, for instance, Abdeljawad et al. [2], Atangana and 

Owolabi [4], Toufik and Atangana [47] and the references therein. For a comprehensive 

monograph on this matter, the interested reader is also referred to Kilbal et al. [22]. In particular, 

boundary value problem (BVPs) for FDEs with non-local boundary conditions (BCs) arise in 

various branches of applied mathematics and engineering; for example, in heat conduction, 

underground water ow, thermoelasticity, and many problems in plasma physics involve FDEs 

with non-local BCs. Non-local integral boundary conditions are widely employed where classical 

boundary conditions fail to produce the needed physical properties of the model being 

investigated. Usually, the first most concerned problem in the study of FDEs is the condition 

for the existence of its solution(s). In this direction, by applying different fixed point theorems 

such as Banach's, Krasnoselskii's and Leray-Schauder nonlinear alternative fixed point theorems, 

many authors have established some useful results on existence and uniqueness of solutions to 

BVPs for FDEs; see, for instance, [5, 6,19,24,36,49] and the references therein. 

Recently, Ntouyas et al [37] introduced a mixed type BVP involving both Riemann-Liouville 

and Caputo fractional derivatives having non-local fractional integro-differential BCs, given as: 
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           (4.1) 
 

where RLDp represents the Riemann-Liouville fractional derivative of order p  (0, 1), CDr; 
CD denote Caputo fractional derivatives of order r  (0, 1) and   (0, p + r), Iq is the Riemann-

Liouville fractional integral of order q > 0, g : J     is a continuous function and ,   . 

In [37], by using Banach contraction mapping principle, Krasnoselskii fixed point theorem and 

non-linear alternative of Leray-Schauder type fixed point theorem, conditions for the existence 

and uniqueness of solution to the BVP (4.1) is investigated. They also studied the existence result 

for inclusion version of problem (4.1) by using fixed point theorem of multivalued maps due to 

Covitz and Nadler [9]. Following [37], in this section, both techniques of soft set-valued maps 

and fuzzy set-valued maps defined on a complete fuzzy metric space are used to discuss some 

sufficient conditions for the existence of solutions of the BVP (4.1). From [37], the mixed BVP is 

given as: 
 

    (4.2) 
 

where K : J    P() is a point-to-set-valued map. In our result herein, we slightly adopt 

the technique of [37] and consider problem (4.2) in the case of non-convex righthand side of the 

inclusion. First, we recall the needed concepts and results of fractional calculus as follows. 
 

Definition 4.1. [22] The Riemann-Liouville fractional derivative of order p of a function g : (0, 

)   is defined as 
 

 
 

where [p] denotes the integer part of the real number p and (.) is the Gamma function. 

 

Definition 4.2. [22] The Riemann-Liouville fractional integral of order p of a function g : (0, ) 

  is defined as 
 

 
 

Definition 4.3. [22] The fractional derivative of order p for n-times differentiable function g : (0, 

)   in Caputo sense is defined as 
 

 
 

Let (J, ) be the Banach space of all continuous functions x : J   equipped  with a 

topology of uniform convergence with the norm defined by: 
 

x = sup{|x(t)| : t  J}. 
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By L’(J, ), we mean the Banach space of Lebesgue integrable functions x : J   endowed 

with the norm: 
 

 
 

Let 
 

                (4.3) 
 

                     (4.4) 
 

                                                                                  (4.5) 
 

Lemma 4.4. [37] A function x  C’ (J, ) is a solution of the BVP (4.2) if there exists a function 

u  L’ (J, ) with u  K(t, x) almost everywhere ( a.e.) on J such that 
 

 
 

and x’( ) =  CDx(), x() = Iqx(), where 1, 2 and 3 are given by (4.3), (4.4) and (4.5), 

respectively. 

For computational convenience, we set the following notations from [37]: 
 

                                                                              (4.6) 
 

                            (4.7) 
 

Definition 4.5. Let X be a nonempty set. A single-valued mapping g : X  X is said to be a 

selection of a set-valued map K : X   P(X) if g(x)   for each x  X. 

For each x  X = C(J, ), we denote the set of all selections of K by SK,x = {g  L’ (J, ) : 

g(t)  K(t, x) a.e. t  J}. 
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Definition 4.6. Let X be a nonempty set. A set-valued map K : X  P(X) is called lower semi-

continuous at x0 if for any y0  K(x0) and any neighborhood U of y0, there exists a neighborhood 

U* of x0 such that K(x0)  U is nonempty, for all x  U*. A set-valued map K is said to be lower 

semi-continuous if it is so at every point x0  X. 

Now, we present the main result of this subsection as follows. 
 

Theorem 4.7. Consider the BVP (4.2). Suppose that the following conditions are satisfied: 
 

(C1) The set-valued map K : J    K is such that for each x  , K(t, x) is measurable 

and lower semi-continuous; 

(C2) there exists a constant ζ > 0 such that H(K(t, x), K(t, y)) ζ|x  y|, for almost all t  J and 

x, y  ; 

(C3) there exists   (0, 1) such that  ζ . 
 

Then, the BVP (4.2) has at least one solution in X = C(J, ). 

Proof. Let (X, ) be a metric space induced from the norm (X, .) and let (X, M, *) be the 

standard fuzzy metric space endowed with the product t-norm a * b = ab, for all a, b  [0, 1]. Let 

F : X  IX be a fuzzy mapping. Then, consider the -level set of F, defined by 
 

 
 

for u  SK,x. Obviously, the set of fuzzy fixed points of F is the solution set of problem (4.2). 

We have to show that F satisfies all the hypotheses of Corollary 3.7. 

Let x  X be arbitrary. Since the set-valued map K, J    K
 is lower semi continuous, it 

follows from Michael's selection theorem ( [26, Theorem 1]) that there exists a continuous 

function ex : J     such that ex(t, x)  K(t, x) for each (t, x)  J  . Therefore, K   

[Fx](x). So, [Fx](x) is nonempty. Clearly, [Fx](x) is compact. However, to see this, notice that 

since u(t)  K(t, x) almost everywhere for each t  J, hence, u is continuous on J and u(t) is 

compact for each t  J. Consequently, [Fx](x) is compact. 

For x  X, take 1  [Fx](x), for each (x)  (0, 1]. Then, there exists u1(t)  K(t, x) such that 

for each t  J, 
 

Fixed Points of Soft Set-Valued Maps with   …      /   Sigma J Eng & Nat Sci 38 (4), 2083-2107, 2020 



2102 

 

 

 (4.8) 
 

From condition (C2), we have H (K(t, x), K(t, y))  ζ |x  y|. Hence, there exists (t)  K (t, 

y(t)) such that |u1 (t)  (t)|  ζ|x(t)  y(t)|, t  J. Define M : J  P() by M(t) = {   : |u1(t)  

(t)|  ζ |x(t)  y(t)|}. Since the operator M (t)K (t, y(t)) is measurable (see [8, Proposition 4]), 

there exists a function u2(t) which is a measurable selection of M. Thus, u2(t)  K (t, y(t)), and for 

each t  J, we get |u1(t)  u2(t)|  ζ |x(t)  y(t)|. For each t  J, take 
 

 (4.9) 
 

From (4.8) and (4.9), we have 
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From the above inequality, we have 1  2  ζx  y. Consequently, 
 

H([Fx](x), [Fy](y))  ζ(x, y).                                                                                                (4.10) 
 

By the assumption (C3), from (4.10), we have 
 

H([Fx](x), [Fy](y))   (x, y).                                                                                                  (4.11) 
 

for some   (0, 1). At this point, Corollary 3.7 can be applied to conclude that the BVP (4.2) 

has at least one solution in X which corresponds to the fuzzy fixed point of F. However, to use 

Corollary 3.6 to derive the same conclusion, we proceed as follows: Let E = (0, 1] be the universe 

of parameter set. Then, for all e  E and x  X, define a soft set-valued map TF : X  [P(X)]E as 
 

TF x(e) = {ⱴ X : (Fx)(ⱴ)  e} 

                                                                   = [Fx]e = [Fx](x). 
 

Therefore, for each t > 0, from (4.11) and Lemma 2.15, we have 
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Furthermore, for any j > 0, it is easy to see that M (x, y, jt) = 1 as t  1. Consequently, all the 

hypotheses of Corollary 3.6 are satisfied. Hence, the BVP (4.2) has at least one solution in X 

which coincides with the e-soft fixed points of the soft set-valued map TF . 

In what follows, we supply an example to validate the axioms of Theorem 4.7. 
 

Example 4.8. Consider the following mixed Riemann-Liouville and Caputo fractional boundary 

value problem: 
 

   (4.12)  
 

 
 

 
 

Recalling the fact that every interval and open (closed) subset of  is measurable, it follows 

that K(t, x) is measurable. Moreover, it is easy to see that K (t, x) is lower semi-continuous and H 

(K(t, x), K(t, y))  1/500 |x  y| = ζ|x  y|, for almost all t  J and x, y  . Furthermore, notice 

that ζ   for ξ = 1/500 and  = 1/2. Hence, all the conditions of Theorem 4.7 are satisfied. 

Consequently, the BVP (4.8) has at least one solution in C(J, ). 

 

5. CONCLUSION 

 

In this work, the idea of soft set-valued maps in connection with Hausdorff fuzzy metric 

spaces on compact sets is initiated. To achieve this aim, the existence of e-soft fixed points of soft 

set-valued map defined on a complete fuzzy metric space is established by using Hausdorff fuzzy 

distance function. Following the fact that fixed point theorem of soft set-valued map is an 

extension of fixed point theorems of fuzzy and multivalued mappings, some fixed point results in 

the framework of single-valued and point-to-set valued mappings are derived as corollaries. 

Moreover, it is well-known that the existence (and uniqueness) of solution(s) of differential 

equations is obtained usually by methods which appeal to classical ordinary and partial 

differential equations. But, more general differential equations require specialized techniques of 

nonlinear functional analysis. This includes some peculiar notion endemic to the problem and 

identification of the appropriate solution and function spaces. From the latter point of view, the 

usability of our results are indicated by an application to mixed fractional differential inclusions 

comprising of both Riemann-Liouville and Caputo differential coefficients having nonlocal  

fractional integro-differential boundary conditions. A few nontrivial examples are further 

provided to support the hypotheses of our results. It is hoped that the presented results herein will 

motivate further studies of set-valued analysis and related fixed point theorems of multivalued 

operators as well as their applications in control theory, dynamical systems, game theory, image 

denoising, optimization theory, Hyers-Ulam-Rassias stability of nonlinear integro-differential 

equations, collocation-type method for integral inclusions, and so on. It is worthy of note that the 

ideas of this paper can be improved upon when further presented in the setting of fuzzy b-metric 
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spaces, rectangular fuzzy metric spaces, intuitionistic fuzzy metric spaces, neutrosophic metric 

spaces, tripled fuzzy metric spaces and other quasi or pseudo-metric spaces. 

 

Competing Interests 

 

The authors declare that they have no competing interests. 

 

Acknowledgement 

 

The authors are thankful to the editors and the anonymous reviewers for their valuable 

suggestions and comments that helped to improve this manuscript. 

 

REFERENCES 

 

[1]  Abbas, M., Altun, I., and Gopal, D. (2009). Common fixed point theorems for non 

compatible mappings in fuzzy metric spaces. Bulletin of Mathematical Analysis and 

Applications, 1(2), 47-56. 

[2]  Abdeljawad, T., Agarwal, R. P., Karapinar, E., and Kumari, P. S. (2019). Solutions of the 

nonlinear integral equation and fractional differential equation using thetechnique of a 

fixed point with a numerical experiment in extended b-metric space. Symmetry, 11(5), 

686. 

[3]  Atanassov, K. T. (1999). Intuitionistic fuzzy sets. In Intuitionistic fuzzy sets (pp. 1-137). 

Physica, Heidelberg. 

[4]  Atangana, A., and Owolabi, K. M. (2018). New numerical approach for fractional 

differential equations. Mathematical Modelling of Natural Phenomena, 13(1), 3. 

[5]  Belarbi, S., and Dahmani, Z. (2013). Some applications of Banach fixed point and Leray 

Schauder theorems for fractional boundary value problems. Journal of Dynamical 

Systems and Geometric Theories, 11(1-2), 59-73. 

[6]  Benchohra, M., Hamani, S., and Ntouyas, S. K. (2009). Boundary value problems for 

differential equations with fractional order and nonlocal conditions. Nonlinear Analysis: 

Theory, Methods and Applications, 71(7-8), 2391-2396. 

[7]  Cagman, N., Karataş, S., and Enginoglu, S. (2011). Soft topology. Computers and 

Mathematics with Applications, 62(1), 351-358. 

[8]  Castaing, C., and Valadier, M. (2006). Convex analysis and measurable multifunctions 

(Vol. 580). Springer. 

[9]  Covitz, H., and Nadler, S. B. (1970). Multi-valued contraction mappings in generalized 

metric spaces. Israel Journal of Mathematics, 8(1), 5-11. 

[10]  Fatimah, F., Rosadi, D., Hakim, R. F., and Alcantud, J. C. R. (2018). N-soft sets and their 

decision making algorithms. Soft Computing, 22(12), 3829-3842. 

[11]  Frigon, M., and O'Regan, D. (2002). Fuzzy contractive maps and fuzzy fixed points. 

Fuzzy Sets and Systems, 129(1), 39-45. 

[12]  Goguen, J. A. (1967). L-fuzzy sets. Journal of mathematical analysis and applications, 

18(1), 145-174. 

[13]  Gregori, V., Morillas, S., and Sapena, A. (2011). Examples of fuzzy metrics and 

applications. Fuzzy Sets and Systems, 170(1), 95-111. 

[14]  Gregori, V., and Mi~nana, J. J. (2016). On fuzzy -contractive sequences and fixed point 

theorems. Fuzzy Sets and Systems, 300, 93-101. 

[15]  Gregori, V., and Sapena, A. (2002). On fixed-point theorems in fuzzy metric spaces. 

Fuzzy sets and systems, 125(2), 245-252. 

[16]  George, A., and Veeramani, P. (1997). On some results of analysis for fuzzy metric 

spaces. Fuzzy sets and systems, 90(3), 365-368. 

Fixed Points of Soft Set-Valued Maps with   …      /   Sigma J Eng & Nat Sci 38 (4), 2083-2107, 2020 



2106 

 

 

[17]  Grabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy sets and systems, 27(3), 

385-389. 

[18]  Heilpern, S. (1981). Fuzzy mappings and fixed point theorem. Journal of Mathematical 

Analysis and Applications, 83(2), 566-569. 

[19]  Houas, M., and Dahmani, Z. (2016). On existence of solutions for fractional differential 

equations with nonlocal multi-point boundary conditions. Lobachevskii Journal of 

Mathematics, 37(2), 120-127. 

[20]  Hussain, N., Kutbi, M. A., and Salimi, P. (2020). Global optimal solutions for proximal 

fuzzy contractions. Physica A: Statistical Mechanics and its Applications, 123925. 

[21]  Kiany, F., and Amini-Harandi, A. (2011). Fixed point and endpoint theorems for set-

valued fuzzy contraction maps in fuzzy metric spaces. Fixed Point Theory and 

Applications, 2011(1), 94. 

[22]  Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J. (2006). Theory and applications of 

fractional differential equations (Vol. 204). Elsevier Science Limited. 

[23]  Kramosil, I., and Michalek, J. (1975). Fuzzy metrics and statistical metric spaces. 

Kybernetika, 11(5), 336-344. 

[24]  Mehmood, N., and Ahmad, N. (2019). Existence results for fractional order boundary 

value problem with nonlocal non-separated type multi-point integral boundary conditions. 

AIMS Mathematics, 5(1): 385{398. 

[25]  Mehmood, F., Ali, R., and Hussain, N. (2019). Contractions in fuzzy rectangular b-metric 

spaces with application. Journal of Intelligent and Fuzzy Systems, (Preprint), 1-11. 

[26]  Michael, E. (1966). A selection theorem. Proceedings of the American Mathematical 

Society, 17(6), 1404-1406. 

[27]  Mihet, D. (2008). Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric 

spaces. Fuzzy Sets and Systems, 159(6), 739-744. 

[28]  Mihet, D. (2010). Fixed point theorems in fuzzy metric spaces using property EA. 

Nonlinear Analysis: Theory, Methods and Applications, 73(7), 2184-2188. 

[29]  Mishra, S. N., Sharma, N., and Singh, S. L. (1994). Common fixed points of maps on 

fuzzy metric spaces. International Journal of Mathematics and Mathematical Sciences, 

17(2), 253-258. 

[30]  Mohammed, S. S., and Azam, A. (2019). Fixed points of soft-set valued and fuzzy set-

valued maps with applications. Journal of Intelligent and Fuzzy Systems, vol. 37, no. 3, 

3865-3877. 

[31]  Mohammed, S. S., and Azam, A. (2019). Integral type contractions of soft set valued 

maps with application to neutral differential equation. AIMS Mathematics, 5(1), 342-358. 

[32]  Mohammed, S. S. and Azam, A. (2020). An algorithm for fuzzy soft set based decision 

making approach. Yugoslav Journal of Operations Research, 30(1), 59-70. 

[33]  Mohammed, S. S. (2020). On Bilateral fuzzy contractions. Functional Analysis, 

Approximation and Computation, 12 (1), 1-13. 

[34]  Molodtsov, D. (1999). Soft set theoryfirst results. Computers and Mathematics with 

Applications, 37(4-5), 19-31. 

[35]  Nadler, S. B. (1969). Multi-valued contraction mappings. Pacific Journal of Mathematics, 

30(2), 475-488. 

[36]  Ntouyas, S. K. (2013). Boundary value problems for nonlinear fractional differential 

equations and inclusions with nonlocal and fractional integral boundary conditions. 

Opuscula Mathematica, 33(1), 117-138. 

 [37]  Ntouyas, S. K., Alsaedi, A., and Ahmad, B. (2019). Existence Theorems for Mixed 

RiemannLiouville and Caputo Fractional Differential Equations and Inclusions with 

Nonlocal Fractional Integro-Differential Boundary Conditions. Fractal and Fractional, 

3(2), 21. 

M.S. Shagari, A. Azam       / Sigma J Eng & Nat Sci 38 (4), 2083-2107, 2020 



2107 

 

 

[38]  Phiangsungnoen, S., Sintunavarat, W., and Kumam, P. (2014). Fuzzy fixed point 

theorems in Hausdor_ fuzzy metric spaces. Journal of Inequalities and Applications, 

2014(1), 201. 

[39]  Raki_c, D., Mukheimer, A., Do_senovi_c, T., Mitrovi_c, Z. D., and Radenovic, S. (2020). 

On some new fixed point results in fuzzy b-metric spaces. Journal of Inequalities and 

Applications, 2020(1), 1-14. 

[40]  Rakic, D., Dosenovic, T., Mitrovic, Z. D., de la Sen, M., and Radenovic, S. (2020). Some 

fixed point theorems of Ciric type in fuzzy metric spaces. Mathematics, 8(2), 297. 

[41]  Riaz, M., Cagman, N., Zareef, I., and Aslam, M. (2019). N-soft topology and its 

applications to multi-criteria group decision making. Journal of Intelligent and Fuzzy 

Systems, 36(6), 6521-6536. 

[42]  Rodriguez-Lopez, J., and Romaguera, S. (2004). The Hausdor_ fuzzy metric on compact 

sets. Fuzzy sets and systems, 147(2), 273-283. 

[43]  Saini, R. K., and Singh, S. B. (2012). Fuzzy version of some fixed point theorems on 

expansion type maps in fuzzy metric spaces. Thai Journal of Mathematics, 5(2), 245-252. 

[44]  Schweizer, B., and Sklar, A. (1960). Statistical metric spaces. Pacific J. Math, 10(1), 313-

334. 

[45]  Sedghi, S., Shobkolaei, N., Do_senovic, T., and Radenovic, S. (2018). Suzuki-type of 

common fixed point theorems in fuzzy metric spaces. Math. Slovaca, 68(2), 451-462. 

[46]  Shoaib, A., Azam, A., and Shahzad, A. (2018). Common Fixed Point Results for the 

Family of Multivalued Mappings Satisfying Contractions on a Sequence in Hausdorff 

Fuzzy Metric Space. Journal of Computational Analysis and Applications, 24(4). 

[47]  Toufik, M., and Atangana, A. (2017). New numerical approximation of fractional 

derivative with non-local and non-singular kernel: Application to chaotic models. The 

European Physical Journal Plus, 132(10), 444. 

[48]  Wardowski, D. (2013). Fuzzy contractive mappings and fixed points in fuzzy metric 

spaces. Fuzzy Sets and Systems, 222, 108-114. 

[49]  Yan, R., Sun, S., Sun, Y., and Han, Z. (2013). Boundary value problems for fractional 

differential equations with nonlocal boundary conditions. Advances in Difference 

Equations, 2013(1), 176. 

[50]  Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fixed Points of Soft Set-Valued Maps with   …      /   Sigma J Eng & Nat Sci 38 (4), 2083-2107, 2020 


