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ABSTRACT 

 
In this article we present a second-order differential equation in the framework of the derivative N, and 

various qualitative properties of the solutions are studied, firstly conditions are obtained under which the 

equation under study has a non-continuity solution at infinity. Later we study the conditions for the 
prolongation of the solutions and their oscillation. 
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1. PRELIMINARIES 

 

Consider the following non-autonomous linear differential equation of the second order  
 

x¨(t)+a(t)x(t) = 0,                                                                                                                            (L)  
 

where a : +   is a nondecreasing function with first continuous derivative. This equation 

describes the motion of a material point of unit mass under the action of restoring force with 

changing elasticity coefficient. Many qualitative properties of equation (L) have been studied for 

a long time and are classic problems of the theory of stability systems and ordinary 

nonautonomous differential equations. In particular, the following results are of great importance. 
  

Theorem 1 Let a be a nondecreasing continuous function such that a(0)  0 and a(t) as t, 

Then all solutions of (L) are bounded. 
  

Theorem 2 Let x = x(t) be a solution of (L) and letʃ0
 t |a(t)|dt < . Then  exists and 

further the general solution of (L) is asymptotic to a0+a1t, where a0 and a1 are constants 

simultaneously not equal to zero. 

Let us now consider a more general case than equation (L), i.e., consider the second order 

nonlinear differential equation 
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x¨(t)+a(t)g(x(t)) = 0,                                                                                                                       (N)  
 

where a(t)  C[0,), g(t)  C1(,), g’(t)  0, and xg(t) > 0 for x  0. The prototype of 

equation (N) is the so-called Emden-Fowler equation (see [8] and [10]): 
 

x¨(t)+a(t)|x(t)| sgnx(t) = 0,  > 0, 
 

which is used in mathematical physics, theoretical physics, and chemical physics. The above 

equation has interesting ma thematical and physical properties, and it has been investigated from 

various points of view, in particular, the solutions of this equation represent the Newton–Poisson 

gravitational potential of stars, such as the Sun, considered as spheres filled with polytropic gas. 

Other interesting results can be found in [29], [30], [31], [32] and the references cited in these. 

The concept of rate of change in any function versus change in the independent variables was 

defined as derivative, first of an integer order, and this concept attracted many scientists and 

mathematicians such as Newton, L’Hospital, Leibniz, Abel, Euler, Riemann, etc. Later, several 

types of fractional derivatives, what will we denote D, have been introduced to date Euler, 

Riemann–Liouville, Abel, Fourier, Caputo, Hadamard, Grunwald–Letnikov, Miller–Ross, Riesz 

among others, extended the derivative concept to fractional order derivative (see [18], [24] and 

[25]). Most of these derivatives are defined on the basis of the corresponding fractional integral in 

the Riemann–Liouville sense and, based on this, they are called global fractional derivatives or 

with memory. 

To date, the study of this area has attracted the attention of many researchers, not only in Pure 

Mathematics, but in multiple fields of applied science. Between its own theoretical development 

and the multiplicity of applications, the field has grown rapidly in recent years, in such a way that 

a single definition of “fractional derivative or integral” does not exist, or at least is not 

unanimously accepted, in [3] suggests and justifies the idea of a fairly complete classification of 

the known operators of the Fractional Calculus, on the other hand, in the work [2] the authors 

study this phenomenon and support the appearance of various operators, both in theoretical and 

practical research. Let us point out that these developments have been obtained in different 

contexts, and not with a single starting point, that is, they are taken as a basis, from the Riemann-

Liouville integral, to that of Katugampola, through other formulations such as Weyl’s, Hadamard, 

or Erdelyi-Kober, in this way various authors have defined different integral operators, even from 

different notions of generalized local derivatives, this last point of view is the one present in our 

work. 

We believe that it is convenient to take into account the historical route that is presented in 

Chapter 1 of [1] where a historical route of differential operators, whether local or global, is 

made, starting from Newton’s classical formulation and arriving at Caputo’s Definition, which 

serves as the basis for presenting a differential operator, with a new parameter, and providing a 

great variety of applications, taking into account the difference between both types of differential 

operators, global and local. A seminal question is addressed in 1.5.1 (p.24), where sentence “We 

can therefore conclude that both the Riemann – Liouville and Caputo operators are not 

derivatives, and then they are not fractional derivatives, but fractional operators. We agree with 

the result [33] that, the local fractional operator is not a fractional derivative” (p.24). For all the 

above, we can affirm that there is a great variety of integral operators, which have proven their 

usefulness in solving a great variety of applications and in successive theoretical developments. 

As an attempt to overcome these difficulties, Khalil et al. [16], came up with an interesting 

idea that extends the familiar limit definition of the derivative and allows to introduce 

successfully a conformable local fractional derivative, more recently, a non-conformable local 

derivative is introduced in [11] (see also [21]). In this way, a new direction in fractional calculus 

was opened, which has shown to be interesting from a theoretical viewpoint and useful in the 

applications. In the spirit of completeness, we remember the definition of the derivative N 

because it will be basic in our work. 

In [22] (see also [35]) a generalized derivative was defined in the following way. 
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Definition 3 Given a function f : [0, +)  . Then the N-derivative of f of order  is defined 

by 
 

                                                          (1) 
 

for all t > 0,   (0,1) being F(, t) is some function. Here we will use some cases of F 

defined in function of Ea,b(.) the classic definition of Mittag-Leffler function with Re(a);Re(b) > 0. 

Also we consider Ea,b(t
)k is the k-th term of Ea,b(.). 

 

 
 

The function Ea,b(z) was defined and studied by Mittag-Leffler in the year 1903. It is a direct 

generalization of the exponential function. This generalization was studied by Wiman in 1905, 

Agarwal in 1953 and Humbert and Agarwal in 1953, and others. 

Examples. Let’s see some particular cases that provide us with new local derivatives. 
 

1) Let F(t, ) = E1,1(t
). In this case we obtain, from Definition 3, the non-conformable 

derivative N
1 f (t) defined in [11] (see also [21]). 

2) Be now F(t, ) = E1,1(t
)1, in this case we have F(t, ) = 1/t , a new non-conformable 

derivative with a remarkable property 

limt N
2 f (t) = 0, i.e., the derived N is annulled to infinity (see [23, 19]). 

3) If we now take F(t, ) = E1,1((1  )t) = e(1)t , we have the conformable derivative used 

in [9]. 

4) F(t, )= E1,1(t
1)1 =t1 with this kernel we have F(t, a)  0 as   1 (see [16]), a 

conformable derivative. 

5) F(t, )= E1,1(t
)1 =t with this kernel we have F(t, )  x as   1 (see [23]). It is clear 

that since it is a non-conformable derivative, the results will differ from those obtained 

previously, which enhances the study of these cases. 

6) Using the Robotov’s Function, that is to say 
 

 
 

like before, E+1,+1(.) is the Mittag-Leffler two-parameter function, we can obtain a non-

conformable derivative (see [34]). 

If the N-derivative of the function x(t) of order  exists and is finite in (t0,), we will say that 

x(t) is N-differentiable in I = (t0,). 
 

Remark 4 The N-derivative solves almost all the insufficiencies that are indicated to the classical 

fractional derivatives. In particular, if F(t, ) = E1,1(t
) = et , we have the following result. 

 

Theorem 5 (See [11]) Let f and g be N-differentiable at a point t > 0 and   (0,1]. Then 
 

a) N
1 (a f +bg)(t) = a N

1 ( f )(t)+b N
1 (g)(t). 

b) N
1 (t

p) = et pt p1, p  . 

c) N
1 () = 0,   . 

d) N
1 ( f g)(t) = f N

1 (g)(t) + g N
1 ( f )(t). 

e)  

f) If, in addition, f is differentiable then N
1 ( f ) = et f’ (t): 
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g) Being f differentiable and  = n integer, we have N
1 ( f )(t) = etn f’ (t).  

 

Remark 6 The relations a), c), d) and (e) are similar to the classical results mathematical 

analysis, these relationships are not established (or do not occur) for fractional derivatives of 

global character (see [17] and [25] and bibliography there). The relation c) is maintained for the 

fractional derivative of Caputo. Cases c), f) and g) are typical of this non conformable local 

fractional derivative. 

These results for the derivative N
1 can be extended without difficulty to the case of the 

generalized derivative N
F . The next result will be used later (see[12]). 

 

Theorem 7 Let a > 0 and f : [a,b]   be a given function that satisfies: 
 

i) f is continuous on [a,b], 

ii) f is N-differentiable for some   (0;1). 
 

Then, we have that if N
1 f (t)  0 ( 0) then f is a non-decreasing (increasing) function. 

Now we will present the equivalent result, for N
1, of the well-known chain rule of classic 

calculus and that is basic in the Second Method of Lyapunov, for the study of stability of 

perturbed motion (see [11]). 
 

Theorem 8 Let   (0,1], g N-differentiable at t > 0 and f differentiable at g(t) then N
1 ( f  g)(t) 

= f’ (g(t)) N
1 g(t). 

Now, we give the definition of a general fractional integral (in [14] was studied in detail, see 

also [35]). Throughout the work we will consider that the integral operator kernel F defined 

below is an absolutely continuous function. 

Let I be an interval I  , a, t  I and   . The integral operator JF,a, right and left, is 

defined for every locally integrable function f on I as 
 

                                                                       (2)         
 

                                                                      (3) 
 

Remark 9 It is easy to see that the case of the JF operator defined above contains, as particular 

cases, the integral operators obtained from conformable and non-conformable local derivatives. 

However, we will see that it goes much further by containing the cases listed at the beginning of 

the work. So, we have 
 

1) If G(t,) = t1, F(t,) = ()G(xt,), from (2) we have the right side Riemann-Liouville 

fractional integrals (R
+ f )(t), similarly from (3) we obtain the left derivative of Riemann-

Liouville. Then its corresponding right differential operator is 
 

 
 

analogously we obtain the left. 

2) With G(t,) =t1, F(t  x,) = ()G(lnt  lnx, )t, we obtain the right Hadamard integral 

from (2), the left Hadamard integral is obtained similarly from (3). The right derivative is 
 

 
 

in a similar way we can obtain the left. 
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3) The right Katugampola integral is obtained from (2) making 
 

 
 

analogously for the integral left fractional. In this case, the right derivative is 
 

 
 

and we can obtain the left derivative in the same way. 

4) The solution of equation ()/2 (u)= f (u) called Riesz potential, is given by the 

expression  where C
n is a constant (see [5, 15, 20]). Obviously, this 

solution can be expressed in terms of the operator (2) very easily. 

5) Obviously, we can define the lateral derivative operators (right and left) in the case of our 

generalized derivative, for this it is sufficient to consider them from the corresponding integral 

operator. To do this, just make use of the fact that if f is differentiable, then N
F f (t) = F(t, ) f’ (t) 

where f’(t) is the ordinary derivative. For the right derivative we have 

 similarly to the left. 

6) It is clear then, that from our definition, new extensions and generalizations of known 

integral operators can be defined. 

7) We can define the function space Lp
 [a,b] as the set of functions over [a,b] such that 

(JF,a+[ f (t)]p(b)) < +. 
 

An important detail that we want to point out is the fact that generalized integral operators, 

corresponding to local derivatives, can also be obtained from the (2) and (3) operators. For 

example, the non-conformable integral operator can be defined this way (see [12]). 
 

Definition 10 The non-conformable fractional integral of order a is defined by the expression 

 
 

The following statement is analogous to the one known from the Ordinary Calculus (see 

[12]). 
 

Theorem 11 Let f be N-differentiable function in (t0,) with   (0,1]. Then for all t > t0 we have 
 

a) If f is differentiable, then NJt0 (N


1 f (t) = f (t)  f (t0). 

b) N
1 (f NJt0 f (t)) = f (t). 

 

Proof. 
 

a) From definition we have 
 

 
 

b) Analogously we have 
 

 
 

■ 
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Remark 12 From the definition of the integral operator J, it is easy to deduce that if f is 

differentiable NJa f (b) = NJa f (t) N J


b f (t).  

It is clear that many “classical” properties of integration theory can be proved without much 

difficulty. For example, we can prove the well-known Mean Value Theorems for Integral 

Calculus (see [14]). 
 

Theorem 13 If f is continuous on [a,b], 0 < a < b, there exists a value c on the interval (a,b) such 

that NJa f (b) = f (c)(b  a). 

Theorem 14 If f is continuous on [a,b], and g is an integrable function that does not change sign 

on [a,b], then there exists a value c on the interval (a,b) such that NJa f g(b) = f (c) NJa g(b). 
 

In our work, we are interested in studying the continuability and oscillation of the solutions of 

the following equation, under suitable assumptions on functions a and g: 
 

N
F (Na

F x(t))+ a(t)g(x(t)) = 0.                                                                                                        (4) 
 

The coefficient a(t) is allowed to be negative for arbitrarily large values of t. Under this 

premise, in general not every solution to the second order nonlinear differential equation (N) is 

continuable throughout the entire half real axis. For this reason, and as a natural generalization of 

the ordinary case, we confine ourselves to those solutions of (4) that exist and can be continued 

on some interval of the form [t0, +), where t0 > 0 may depend on the particular solution. A 

solution x(t) is said to be oscillatory if it has arbitrarily large zeros, the equation (4) is called 

oscillatory if all continuable solutions are oscillatory. Here we are concerned with sufficient 

conditions on a(t) so that all solutions of (4) are oscillatory. 

 

2. RESULTS 

 

Next to equation (4), we will consider the following equivalent system: 
 

Na
F x(t) = y(t), 

Na
F y(t) = a(t)g(x(t)),                                                                                                                      (5)  

 

with a  C[0,+), g  C(R), xg(x) > 0 if x  0 and G(t) = NJ0 g(s)ds. Thus we have the 

following results, the first concerning the non-prolongability of the solutions, of vital importance 

in the qualitative theory. Later the following functions will be used. 
 

                                                            (6) 
 

                                               (7) 
 

so that 
 

a(t) = b(t)c(t),                                                                                                                                  (8) 
 

where b(t) is non-increasing and c(t) is non-decreasing function with N
F a(t)+ = max(N

F 

a(t), 0) and N
F a(t)_ = max(N

F a(t), 0), so that N
F a(t) = N

F a(t)+  N
F a(t)_. 

 

2.1. On the continuability of solutions 

 

Theorem 15 Suppose in (4) a(t1) < 0 for some t1 > 0. If either 
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a) NJ0 (1+G(u))1/2(+) < , or 

b) NJ0 (1+G(u))1/2() > ,  
 

Then (4) has solution x(t) which is not continuable to +: 

Proof. As a consequence of the continuity of a and of the fact that a(t1) < 0, there are positive 

numbers , M and m such that M  a(t)  m, if t1  t  t1 + . Assume that condition a) holds 

and let (t(t), y(t)) be a solution of (5) satisfying x(t1) = 0 with y(t1) large and to be determined. 

From (5) we have both x(t) and y(t) are monotonically increasing while (x(t), y(t)) is defined on t1 

 t  t1 + . Integrating the second equation of (5) and taken into account the Theorem 14 we have 
 

 
 

and so 
 

 
 

Since N
F x(t) = y(t) we have, from the left hand side of the above 

 

 
 

Since a) holds, we may choose y2(t1) so large that the integral is smaller than . It the follows 

that x(t)   before t reaches t1 + . Let  > 0 be given, by a) there exist T > 0 such that 
 

 
 

Write NF =   1 and agree that y(t1) will be taken so large that NF > 0, then 
 

 
 

Since T is fixed, we may take y(t1) so large that the integral is smaller than . From here we 

have the desired result, choosing  such that  < . This completes the proof in case a), the 

case b) is proved in a similar way working in the quadrant III of the xy-plane.   ■ 
 

Remark 16 It is easy to check the scope of the previous result, considering the equation N
F (N

F  

x(t)) t(1+)e2ta x(t)= 0, does not satisfy conditions a) and b) of the Theorem and which has the 

non-oscillatory solution x(t) = e2t. 

It is known that the only way in which a solution (x(t), y(t)) of (5) can fail to be defined past 

some T is if  (x2(t) + y2(t)) = + (cf. [6], p.61). It is easily shown that if a(t) is continuous 
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and non negative for all t  0, then there is no T for any solution of (5) satisfying  x2(t) = +. 

Thus, the only way in which it is possible for solutions to behave as in the proof of Theorem 1 is 

for a(t1) < 0 for some t1.  
 

Theorem 17 Let a(t) be continuous and satisfy a(t) < 0 on an interval t1  t < t2 with a(t2)  0. 

Then (5) has a solution (x(t), y(t)) defined for t = t1 and satisfying   x(t) = + for some T 

satisfying t1  T < t2 if and only if either a) or b) holds. 
 

Proof. Sufficiency. From Theorem 15 we have that such solution exist if a(t1) < 0 and if a) or b) 

holds. 

Necessity. We assume that such solution exist, in this way (x(t); y(t)) is defined on [t1,T), 

show that a) is true. Using the same considerations as in the above Theorem we have 
 

 
 

for t*  t < T. As N
F x(t) = y(t) we have 

 

 
 

from this we have 
 

 
 

Now G(x) is an increasing function for x > 0 and we know that x(t) is increasing. Thus since 

y2(t*) > 0 the integrand is defined. Since x(t)   as t  T, we see that 
 

 
 

Making w(t*)  we obtain 
 

 
 

If w(t*)  1, a) holds. Now suppose that w(t*) > 1, then 
 

 
 

Since the first integral converges, so does the second and hence a) holds. 

If x(t)   as t  T then a similar proof may be carried out in quadrant III of the xy-plane 

showing that b) holds. This completes the proof.                                                                             ■ 

Now we present a result equivalent to Theorem 1 for equation (4). This problem has received 

a considerable amount of attention during the past century, particularly when (L) is a nonlinear 

ordinary differential equation of type (N). 
 

Theorem 18 Under assumption on function g of Theorem 15 let a a continuous and positive 

function on [0, +) satisfying 
 

a(t)   , as t  .                                                                                                                       (9)  
 

Then all solutions of (5) can be defined for all t  t0 > 0. 
 

Proof. We will develop an extension of Liapunov’s Second Method in this proof. For this, we 

define the following functions. 
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W(t,x(t), y(t)) = b(t)V(t,x(t), y(t))                                                                                                   (10) 
 

where b(t) is defined by (6) and V is given by 
 

                                                                             (11) 
 

where G is as before. Then along solutions of system (5), we have 
 

 
 

and 
 

 
 

Using (6), (7) and (8) we obtain 
 

                                                                                                 (12) 
 

so W is non-increasing function. As we pointed out before, suppose such a T exists for some 

solution of system (5), i.e. satisfying lim . Now 
 

 
 

being M = maxt[t0,T] a(t). From this we have y(t) is uniformly bounded, say y(t)  K for t0  

t < T. But N
F x(t) = y(t) so x(t)  u0+K(t  t0)  x0 + K(T  t0). This completes the proof.            ■ 

 

2.2. Oscillation  

 

Theorem 19 Under assumptions a(t)  C[0, ), g(x)  C1 (, ), g’(x)  0, and xg(x) > 0 for x 

 0, suppose that 
 

                     (13) 
 

for every x(t) > 0, then any solution of equation (4) is either oscillatory or tends 

monotonically to zero as t  +. 
 

Proof. Suppose that x(t) is a non-oscillatory solution of (4), that is, it is of constant sign from a 

certain value of t, x(t) > 0 for all t  [t0,+) being t0 > 0. From (4) we have 
 

 
 

integrating by parts and taking into account that gꞌ(t)  0 we obtain 
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with  By (13) we have  as t  + this means that we can 

find some constant k > 0 such that 
 

 
 

and from this we have 
 

 
 

The negativity of right hand side implies lim  Thus, every solution of (4) 

is oscillatory or tends to zero monotonically. 

■ 

 

3. CONCLUSIONS 

 

In this paper, we study the oscillatory character of a generalized nonlinear equation of order  

+  using the analysis of the phase plane, in this way, extending methods used in the integer case, 

to the non-conformable equation (4). It is clear that the methods used can be used for other 

kernels of the Definition 3. 

On the other hand, one might think that this study is designed for generalized differential 

equations only, however we want to conclude this work with a methodological observation. 

Consider the following second order nonlinear ordinary differential equation (see [4]) 
 

                                                                        (14) 
 

where p,a : [t0, +)  (0, +) are continuous and f :    is continuous and satisfies the 

known signum condition f (x)x > 0, for x  0. 

One of the most valued asymptotic properties is that of oscillation, two issues are central in 

this case: the existence of nonoscillatory solutions and the oscillation of all solutions. Taking into 

account the Definition 3 we can define the following generalized derivative, using the following 

function. Let F(t, )= p(t, ) such that F(t, 1) = p(t) where p(t) is the function involved in the 

equation (14). From this equation we easily obtain the following generalized equation 
 

                                                                   (15) 
 

with q(t, ) = a(t)p(t, ). In this way, we can study the equation (14) with the help of the 

equation (15) and with the same techniques of this work (or following to [13]). 

Of course, if we use other of the kernels indicated at the beginning of the work, we can study 

in a similar way, a great variety of problems that arise from various applications, for example, 

equations of type p-Laplacian as studied in [7]. 

We would like to point out finally, two important details. First, one of the criticisms of local 

generalized derivatives is based on various works (see mainly [26, 27]) because they satisfies the 

well-known Leibniz Rule of the product, at [22] we build local derivatives that violate this rule, 

which means this is no longer an essential condition for fractional derivatives. For example, 

taking H (, ) = E1,1() and so we have, from Definition 3 
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and regarding our N1-derivative of [11] it becomes: 
 

                                            (16) 
 

From (16) we can easily obtain the following conclusions: 
 

a) Is a local operator. 

b) Is a no conformable fractional derivative. 

c) It does not comply with Leibniz’s rule. 

d) If  = 0,  = 1 then NE0
1 f (t) = N0

1 f (t)+ f (t) = (1+e) f (t). 

e) If  = 1,  = 0 then NE1
0 f (t) = N1

1 f (t) = et1 f ꞌ(t), if f is derivable. 

f) If we linearize the exponential in (16) and if the limit exists, then we have (writing NL
 

instead of NE
 ) 

 

                                                                              (17) 
 

g) Unfortunately, “we lose” the Chain Rule that was valid for our N-derivative (see [11]), so 

for NL
  we obtain: 

 

 
 

h) From (17) we derive that 
 

 
 

Where we can draw the following: if the term  f () exists, then the derivative N
 f (t) is 

only a “translation” of the derivative of the function when t  , so it does not affect the 

qualitative behavior of the ordinary derivative, this is of vital importance in the study of 

asymptotics properties of solutions of fractional differential equations with NL
. Unfortunately, 

the non-existence of the limit of the function to infinity makes the qualitative study of these 

fractional differential equations impossible. 
 

i) Let’s go back to the definition (2), it is clear that the function H(, ) can be generalized 

although that would complicate the calculations extraordinarily. Of course this does not close the 

discussion on what terms can be “added” to the increased function that give local fractional 

derivatives that violate the Leibniz Rule, which would maintain the locality, as a historical 

inheritance of the derivative, and would default Leibniz’s Rule, as a “necessary” condition so that 

there is a fractional derivative. 
 

The second criticism is related to the local character of the generalized derivatives of 

Definition 3 (see [28]). From its very origins, the notion of derivative is a “local” notion, opposed 

to the globality of the integral, hence they are not inverse operators in the strict sense. It has 

always been referred to instants, points, specific magnitudes and not at intervals. The classical 

notions of fractional derivatives ”forgot” this fact and built an operator that is not local, therefore, 

from its conception, the global fractional derivatives are not derivative, it is an operator of another 

nature. As we have said, it is impossible to compare them, so Tarasov’s statements should be 

reformulated as follows: “No locality. No differential operator”. 
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