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ABSTRACT  

The intention behind carrying out this research work is to analyze the steady Magnetohydrodynamic (MHD) 

boundary layer flow with Casson nanofluid in presence of Viscous and Ohmic dissipation effects towards a non-linear 

stretching sheet. Two phase representation of nanofluid studied the consequence of Brownian motion along with 

thermophoresis. The major purpose of study is to investigates the significant role of prominent fluid parameters 

especially yield stress, slip velocity, thermophoresis, Brownian motion, Eckert number, Schmidt number, magnetic 

parameter and non-linear stretching parameter on profile of velocity, temperature distribution and concentration while 

keeping the other parameters under study constant. Runge-Kutta Fehlberg (RKF) approach was adopted to numerically 

solve the non-linear governing equations and the linked boundary conditions by use of shooting technique. In present 

study, we use MATLAB for finding the final outcomes and relating the concluding results for local Nusselt 

number −𝜃𝛿
′ (0) with extant outcomes in literature as a limiting case in the absence of thermophoresis and Brownian 

motion and an excellent agreement is noted. Over all the consequence of prominent fluid parameters are explained via 

graphs, whereas distinction of several valuable engineering quantities like skin friction coefficient, local Nusselt 

number and local Sherwood number are also tabulated. The finding of present study helps to control the rate of heat 

transportation as well as fluid velocity in any manufacturing processes and industrial applications to make desired 

quality of final product. 

 

Keywords: Non-Linear Stretching Sheet, Brownian Motion, Thermophoresis, Casson Fluid, MHD, Viscous 
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INTRODUCTION  

In various fields of science and technology rapid progress has urged the researchers to extend their study towards 

the regime of boundary layer flow over a stretching sheet. The boundary layer flow behavior towards a linearly or non-

linearly stretching sheet plays a significant role for solving engineering problems and possess vast applications in 

manufacturing and production processes including metal spinning, rubber sheet manufacturing, production of glass 

fibers, wire drawing, extrusion of polymer sheets, petroleum industries, polymer processing etc. In these cases, the 

final product of desired characteristics depends on the rate of cooling in the process and the process of stretching. The 

dynamics of the boundary layer fluid flow over a stretching surface originated from the pioneering work of Crane [1] 

and he examined the incompressible steady boundary layer fluid flow caused by stretching sheet which moves in its 

own plane with linear velocity due to the uniform stress applications. This problem is particularly interesting as Crane 

[1] obtained the exact solution of 2D Navier-Stokes equations. Afterthat, Gupta and Gupta [2] extend Crane [1] work 

over different mathematical geometries. Yoon et al. [3] studied the theoretical and experimental results using Coulomb 

friction model by considering punch-sheet interface. Also, Sarma and Rao [4] examined the viscoelastic fluid flow by 

considering stretched sheet. In view of this, Vajravelu [5] studied flow and heat transfer in a viscous fluid over a 

nonlinear stretching sheet without using the impact of viscous dissipation. Cortell [6] examined heat and fluid flow 

transportation over a nonlinear stretching sheet for two different types of thermal boundary conditions, prescribed 

surface temperature (PST) and constant surface temperature (CST). The influence of heat transfer on the stagnation 

point flow of a third-order fluid over a shrinking surface has been studied by Nadeem et al. [7]. Recently, Prasad et al. 
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[8] examined the mixed convection heat transfer aspects with variable fluid flow properties over a non-linear stretching 

surface.  

    Fluid heating and cooling are important in many industries such as power, manufacturing and transportation. 

Effective cooling techniques are greatly needed for cooling any sort of high energy device. Common heat transfer 

fluids such as water, ethylene glycol, and engine oil have limited heat transfer capabilities due to their low heat transfer 

properties. In contrast, metals have thermal conductivities up to three times higher than these fluids, so it is naturally 

desirable to combine the two substances to produce a heat transfer medium that behaves like a fluid, but has the thermal 

of a metal. Since last two decades, study of nanofluid has urged the researcher’s attention due to their heat 

transportation rate. Nanofluid comes in existence when we add a small quantity of nano-sized 10−9 − 10−7 particles 

to the base fluids. Low heat transportation fluids like fluorocarbons, glycol, deionized water, etc. have badly thermal 

conductivity and therefore deliberated necessary for heat transfer coefficient surrounded by heat transfer medium and 

surface.  The nanoparticles are typically made up of metals (𝐴𝑙, 𝐶𝑢), nitrides (𝐴𝑙𝑁, 𝑆𝑖𝑁), carbides (𝑆𝑖𝑐), oxides (𝐴𝑙2𝑂3), 

or nonmetals (carbon nanotubes, Graphite, etc.) and the base fluid (conductive fluid) is usually water or ethylene 

glycol. Also, it has been experimentally proved that rate of heat conduction of nanofluids is more than rate of heat 

conduction of the base fluids. The concept of nanofluid was initially proposed by Choi and Eastman [9] to indicate 

engineered colloids composed of nanoparticles dispersed in a base fluid. An MIT based comprehensive survey has 

been done by Buongiorno [10] for convective transportation in nanofluids by considering seven slip conditions that 

may produce a relative velocity within the base fluid and nanoparticles. Only two (Brownian motion and 

thermophoresis) out of these seven slip mechanisms were found to be important mechanisms. By adopting Buogiorno's 

model, Kuznetsov and Nield [11] explored the nanofluid boundary layer uniform convecting fluid flow. 

In recent years, MHD fluid flow has gained researchers attention due to its controllable heat transfer rate. 

Magnetohydrodynamics (MHD) effect also play and influential role in controlling the rate of cooling as well as 

segregation of molten metal’s from various non-metallic impurities. Magnetohydrodynamic (MHD) fluid flow has 

enormous utilization in manufacturing processes, even in the industrial areas as well. The terminology 

“Magnetohydrodynamic” is combination of three elementary terms magneto that stands for magnetic field, hydro that 

stands for fluid / liquid and dynamics that stands for evolution of particles. The existence of external magnetic field 

gives rise to Lorentz drag force which acts on the fluid, so potentially altering the characteristics of fluid flow especially 

velocity, temperature and concentration. Grouping of electromagnetism Maxwell’s equation and fluid mechanics 

Navier’s stokes equations therefore provides Magnetohydrodynamic (MHD) relation [12, 13]. Hayat et al. [14] studied 

the MHD fluid flow transportation over stretching surfaces. Later, the influence of viscous and Ohmic dissipation (i.e. 

joule heating) in nanofluid has been presented by Hussain et al. [15]. Vajravelu and Canon [16] studied the flow 

behavior of fluid towards a non-linear stretching sheet. Further, Matin et al. [17] analyzed the entropy effect in MHD 

nanofluid flow over stretching surface. Shawky et al. [18] studied the Williamson nanofluid flow in porous medium 

and he acknowledged that enhancement in non-Newtonian parameter escalates skin friction coefficient along with the 

rate of heat transfer. Basir et al. [19] examined the consequences of Peclet and Schmidt number in existence of partial 

slip towards a stretching surface. After that, rate of heat transfer along with partial slip condition was generalized by 

Pandey and Kumar [20]. Recently, Vinita and Poply [21] discussed MHD slip fluid flow of nanofluid in the existence 

of free stream velocity or outer velocity towards a stretching surface. Vinita et al. [22] studied MHD fluid flow with 

variable slip conditions over non-linear stretching surface. Furthermore, non-linearity effect towards the stretching 

surface under different physical circumstances has been examined by researchers in [6, 23-25]. 

Casson fluid is classified as a non-Newtonian fluid due to its rheological characteristics in relation to the shear 

stress–strain relationship. It behaves like an elastic solid at low shear strain and above a critical stress value; it behaves 

like a Newtonian fluid. A Casson fluid can best be described as a shear thinning liquid with infinite viscosity at zero 

shear rates, and zero viscosity at an infinite rate of shear. Some common examples of liquids that exhibit Casson fluid 

characteristics include tomato sauce, honey, soup, orange juice and human blood. In 1959, Casson fluid model was 

pioneered by Casson [26] for prognosis pigment-oil intermission flow. Furthermore, nanofluid boundary layer fluid 

flow over disparate geometries was premeditated by numerous researchers in [27-36]. Fluids behave as a solid, if the 

yield stress is more than applied shear stress. On the other hand, fluid behaves as a liquid for lesser yield stress. 

Kameshwaran et al. [37] investigated the dual solution in shrinking / stretching surface with Casson fluid flow to 
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determine Lorentz force effect on heat and flow transportation. Also, Khan et al. [38] studied consequence of viscous 

dissipation on MHD nanofluid flow past a stretching sheet. Afify [39] investigated influence of partial slip chemical 

reaction and viscous dissipation over Casson nanofluid by considering stretched sheet. 

Motivated by the above mentioned literature survey and widespread biological, industrial as well as engineering 

applications, it is of prime importance to explain the importance of mass and heat transportation of MHD flow past a 

non-linear stretching sheet with viscous and Ohmic dissipation effects by considering Navier velocity slip conditions. 

A precise review of already published research discloses that no such attempt has been made earlier even though the 

fruitfulness of thoughts and phenomenon explained in the present work can be expected to lead to the extremely 

productive interaction across disciplines. The mathematical difficulties and non-linearity appearing in the Casson 

nanofluid equations led us to use the numerical approach. The methodology adopted will be to solve the non-linear 

differential system through Runge-Kutta Fehlberg method. Behaviors of arising variables on concentration, 

temperature and velocity are graphically interpreted. The outcomes of current study reveal that non-linearity behavior 

of stretching sheet enhances the values of Sherwood number and skin friction coefficient while declination in value of 

Nusselt number is noticed. We give qualitative and quantitative comparisons with previously published work to show 

that our results have highly accurate. This study holds important industrial application, particularly in the field of 

extrusion where the fluid dispersed with particles is used to augment the strength and durability of the material. 

 

MATERIALS AND METHODS 

         In present analysis, 2-D incompressible fluid flow in MHD Casson nanofluid over non-linear stretching sheet 

has been considered. Non-linear behavior generates flow and sheet is stretched in both direction of x axis with 

stretching velocity 𝒖𝒘 = 𝒂𝒙𝑵, where 𝒂, 𝒙 and 𝑵 denotes a constant, stretching surface coordinate and non-linear 

stretching parameter respectively.  𝑻𝒘 = 𝑻∞ + 𝑻𝟎𝒙𝒎 at 𝒚 = 𝟎, where 𝑻𝟎 refers to the positive constant, 𝑻∞ refers to 

the ambient temperature attained and m refers to the physical parameter known as surface temperature parameter. Also, 

by introducing 𝒎 = 𝟎, we have a special case of constant surface temperature (CST). Figure 1 represents the physical 

model of the current study. The continuity, momentum, energy and concentration equations of the incompressible 

Casson nanofluid boundary layer flow are as follows (see Buongiorno [10], Mustafa and Khan [40], Usman et al. [41], 

Gireesha et al. [42], Seth et al. [43])  
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Boundary conditions are given as: 

𝑢 = 𝑢𝑤 + 𝑢𝑠, 𝑣 = 0, 𝑇 = 𝑇𝑤 , 𝐶 = 𝐶𝑤  𝑎𝑡 𝑦 = 0                                                     (5) 

 

𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞ 𝑎𝑠 𝑦 → ∞                                                          (6) 

 

Here horizontal and vertical velocities are represented by 𝑢 and 𝑣, respectively. Also 𝜈 denotes kinematic 

viscosity, 𝜌𝑝 is the density of particle, 𝛼𝑚 =
𝑘𝑚

(𝜌 𝑐)𝑓
 is the thermal diffusivity, 𝑎 is a positive constant, 𝜏 =

(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
 defines 

a proportion of heat capacities, 𝛽 denotes Casson fluid parameter, 𝐷𝑇  reflects thermophoretic diffusion coefficient, 𝐵 
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is the magnetic field intensity, 𝐷𝐵 denotes Brownian diffusion coefficient, 𝜎 represents electrical conductivity and 𝑢𝑠 

refers to slip velocity that is considered to be proportional to wall stress described as:  

 

𝑢𝑠 = 𝑙 (
𝜕𝑢

𝜕𝑦
)

𝑦=0

                                                                                        (7) 

 

here, 𝑙 refers to the slip length which is proportionality constant for slip velocity. The fundamental equations (1) to (4) 

with boundary conditions (5) to (6) are transformed using similarity variables [25] 

 

𝑢 = 𝑎𝑥𝑁𝑓𝛿
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𝑎𝜈(𝑁 + 1)

2
𝑥

𝑁−1
2 (𝑓𝛿(𝜉) + (

𝑁 − 1

𝑁 + 1
) 𝜉𝑓𝛿

′(𝜉))     

    𝜙𝛿(𝜉) =
𝐶 − 𝐶∞

𝐶𝑤 − 𝐶∞

, 𝜃𝛿(𝜉) =
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞

, 𝜉 = 𝑦√
𝑎(𝑁 + 1)

2𝜈
𝑥

𝑁−1
2  

                                    (8) 

 

 

Figure 1: Physical model and coordinate system 

 

Inserting equation (8) into equations (2) to (4), the governing equations (1)-(4) takes the form  
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1

2
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′ +
𝑁𝑡

𝑁𝑏
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The relevant boundary conditions are reduced to 
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𝑓𝛿(𝜉) = 0, 𝑓𝛿
′(𝜉) = 1 + 𝑑𝑓𝛿

′′(𝜉), 𝜃𝛿(𝜉) = 1 𝑎𝑛𝑑 𝜙𝛿(𝜉) = 1 𝑎𝑡 𝜉 = 0                               (12) 

 
     

𝑓𝛿
′(𝜉) → 0, 𝜙𝛿(𝜉) → 0 𝑎𝑛𝑑 𝜃𝛿(𝜉) → 0 𝑎𝑠 𝜉 → ∞                                                     (13) 

 

where prime denotes derivative with respect to 𝜉 and the key crucial parameters are defined by: 
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2
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                                       (14) 

 

Here 𝑀 is the magnetic parameter, 𝑁𝑡 is the thermophoresis parameter, 𝑆𝑐 is the Schmidt number, 𝑃𝑟 is Prandtl 

number, 𝑑 is the velocity slip parameter, 𝐸𝑐 is the Eckert number and 𝑁𝑏 is the Brownian motion parameter. It is notes 

significantly that this boundary value problem condenses into the classical problem of mass, heat and flow 

transportation because of the stretching surface in a viscous fluid when 𝑁 = 1 and in equations (10) and (11); 𝑁𝑏, 𝑁𝑡 

are zero (The boundary value problem is of no physical significance and condenses into the classical problem for 

becomes ill-posed). 

It is worth mentioning that equation (9) with the boundary conditions (12), (13); where 𝑁 = 0, are the classical 

Blasius flat-plate flow problem and a comprehensive numerical analysis of that problem has been conceded by the 

author of this work. For the linear stretching problem (i.e., when 𝑁 = 1), the exact solution for 𝑓𝛿  is 𝑓𝛿(𝜉) = 1 − 𝑒−𝜉, 

which was first obtained by the great scientist Crane [1] and this exact solution is unique, while for the non-linear 

stretching problem (i.e., when 𝑁 ≠ 1), there is no exact solution. Also, the physical quantities of interest skin friction 

coefficient, local Nusselt number and local Sherwood number are respectively defined as: 

 

𝐶𝑓𝑥 =
𝜏

𝜌𝑢𝑤
2

, 𝑁𝑢𝑥 =
𝑥𝑞𝑤
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𝐷𝐵(𝐶𝑤 − 𝐶∞)
                                                 (15) 

 

where 𝜏𝑤, 𝑞𝑤 and 𝑞𝑚 are wall shear stress, local heat flux and local mass flux at the stretching surface serially given 

as: 
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2 √
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𝒒𝒎 = −𝑫𝑩(𝑪𝒘 − 𝑪∞)𝒙
𝑵−𝟏

𝟐 √
𝒂(𝑵 + 𝟏)

𝟐𝝂
𝝓𝜹

′ (𝟎)                                                    (18) 

 

The system of partial differential equations (9)-(11) are highly non-linear, hence cannot be solved by using 

analytical methods. The variational Runge Kutta Fehlberg method has been implemented. 

 

NUMERICAL PROCEDURE  

The system of differential equations (9)-(11) are not solved analytically due to extremely non-linear behaviour. To 

solve this system of non-linear differential equations (9)-(11) together with boundary conditions (12)-(13), we adopt 

Runge Kutta Fehlberg approach (numerical procedure) and solution is investigated against the variation in Eckert 
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number 𝐸𝑐, Casson fluid parameter 𝛽, velocity slip parameter 𝑑, thermophoresis 𝑁𝑡, Brownian motion parameter 𝑁𝑏, 

Schmidt number 𝑆𝑐, non-linear stretching parameter 𝑁 and magnetic parameter 𝑀. The value of horizontal axis - 𝜉 is 

chosen in such a way that a velocity, temperature and concentration profiles asymptotically tends to the boundary 

condition. All the simulations are conceded with 𝜉𝑚𝑎𝑥 = 10. However, to illustrate the characterization of curve 

efficiently, much lower values of 𝜉 are used. The major advantage of shooting method over many numerical techniques 

is that it has fifth order truncation error. Also the process of solution computation is easier as compared to other 

numerical methods or techniques. For this purpose, the coupled differential equations (9)-(11) are rehabilitated into a 

set of seven initial value problems by launching the new set of dependent variables 𝑠𝑖 (i=1 to 7) as: 

 

𝑠1
′ = 𝑠2                                                                                                 (19) 

 

𝑠2
′ = 𝑠3                                                                                                 (20) 

 

𝑠3
′ =

1
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𝛽
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2 − 𝜆2) +
2

𝑁 + 1
𝑀(𝑠2 − 𝜆)]                                           (21) 

𝑠4
′ = 𝑠5                                                                                                (22) 
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2]         (23) 
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′ = 𝑠7                                                                                               (24) 
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The subjected boundary conditions (12) and (13) are reduced to    

 

𝑠1 = 0, 𝑠2 = 1 + 𝑑 𝑠3, 𝑠6 = 1, 𝑠4 = 1 𝑎𝑡 𝜉 = 0     
𝑎𝑛𝑑 𝑠2 = 𝜆, 𝑠6 = 0, 𝑠4 = 0 𝑎𝑠 𝜉 → ∞

                                          (26) 

Where 

𝑠1 = 𝑓𝛿 , 𝑠2 = 𝑓𝛿
′, 𝑠3 = 𝑓𝛿

′′, 𝑠3
′ = 𝑓𝛿

′′′      

             𝑠4 = 𝜃𝛿 , 𝑠5 = 𝜃𝛿
′ , 𝑠5

′ = 𝜃𝛿
′′ 

          𝑠6 = 𝜙𝛿 , 𝑠7 = 𝜙𝛿
′ , 𝑠7

′ = 𝜙𝛿
′′ 

                                                             (27) 

 

To solve the above system of differential equations along with the boundary conditions, shooting technique is 

implemented which consists of the following steps [15]:  

1. Choose the appropriate value for the limit 𝜉∞. 

2. Next important step is to select good initial approximations for 𝑠3(0), 𝑠5(0) and 𝑠7(0).   

3. Therefore the above system of differential equations (19)-(25) is converted into the initial value problem and 

then it is solved with the help of Runge-Kutta-Fehlberg method. 

4. The computed solution will converge if absolute difference of given and computed values of 𝑠2(∞), 𝑠4(∞) 

and 𝑠6(∞) is absolutely less than tolerance error i.e. 10−6. 

5. If these differences are greater than tolerance error, then guessed values of 𝑠3(0), 𝑠5(0) and 𝑠7(0) are 

modified with the help of Newton's method. 

This procedure is repeated until the computed solution meets the convergence criteria as shown in Figure 2. 
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Figure 2: Flow chart of numerical technique 

 

Validation of Numerical Scheme 

In current study, we use RKF method for finding the final outcomes and the adopting numerical process (i.e. 

shooting technique) is valid. We take constant vale of nanoparticle concentration and temperature at the boundary. For 

the purpose of verification of the code, we compare our results for local Nusselt number with those of Rana and 

Bhargava [25] and Cortell [6] for different values of Prandtl number 𝑃𝑟 and non-linear stretching parameter 𝑁 by 

taking the values of Brownian motion parameter 𝑁𝑏 and thermophoresis parameter 𝑁𝑡 as zero as shown via Table 1. 

A very good agreement in the results can be seen which strengthens the reliability of the present work (see Figures 3 

and 4). 

Table 1:  Comparison of results for local Nusselt number −𝜃𝛿
′ (0) with 𝑁𝑡 = 𝑁𝑏 = 0 and different values of Prandtl 

number 𝑃𝑟 and non-linear stretching parameter 𝑁 
 

𝑃𝑟 𝑁 Rana and Bhargava [25] Cortell [6] Present results 

 
 
1.0 
 

0.1 

0.5 

1.5 

3.0 

0.6101 

0.5955 

0.5756 

0.5660 

0.6102 

0.5952 

0.5745 

0.5644 

0.6102 

0.5952 

0.5747 

0.5647 

 
 
5.0 

0.1 

0.5 

1.5 

3.0 

1.5683 

1.5512 

1.5269 

1.5144 

1.6071 

1.5867 

1.5574 

1.5423 

1.6077 

1.5867 

1.5576 

1.5431 
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Figure 3: Bar graph showing comparison of local 

Nusselt number for non-linear stretching sheet when 

𝑃𝑟 =  1.0  

Figure 4: Bar graph showing comparison of local 

Nusselt number for non-linear stretching sheet when 

𝑃𝑟 =  5.0  
 
RESULTS AND DISCUSSION 

Present study finds numerical solution of differential equations (9) to (11) subjected to the boundary 

conditions (12) to (13) that are computed using RKF method by applying shooting technique. The main reason behind 

to solve the present problem are to determine the impact of prominent fluid parameters namely Eckert number 𝐸𝑐, 

Casson fluid parameter 𝛽, velocity slip parameter 𝑑, thermophoresis 𝑁𝑡, Brownian motion parameter 𝑁𝑏, Schmidt 

number 𝑆𝑐, non-linear stretching parameter 𝑁 and magnetic parameter 𝑀 on 𝑓𝛿
′(0), 𝜃𝛿(0) and 𝜙𝛿(0). Physically, the 

values of prominent physical parameters are taken as 𝛽 =  0.4, 𝑑 =  0.1, 𝑁𝑏 =  0.3, 𝐸𝑐 =  0.4, 𝑁𝑡 =  0.3, 𝑆𝑐 =

 1.5, 𝑁 =  𝑀 =  1.0, 𝑚 =  1.0 and 𝑃𝑟 =  5.0. Table 2 demonstrate the impact of fluid 

parameters 𝛽, 𝑑 𝑁 𝑏, 𝑁 𝑡, 𝐸𝑐, 𝑆𝑐, 𝑀 and 𝑁 on skin friction coefficient 𝑓𝛿
′′(0), local Nusselt number −𝜃𝛿

′ (0) and local 

Sherwood number −𝜙𝛿
′ (0) by taking fixed entries of fluid parameters Prandtl number, 𝑃𝑟 as 5.0 and surface 

temperature parameter 𝑚 as 1.0 and an excellent convergence has been achieved in current problem. 

 

Figure 5: Impact of Casson fluid parameter 𝛽 on 

velocity profile 𝑓𝛿
′(𝜉) for 𝑚 =  1.0, 𝑃𝑟 =  5.0, 𝑑 =

 0.1, 𝑁𝑏 = 0.3, 𝑁𝑡 =  0.3, 𝐸𝑐 =  0.1, 𝑆𝑐 =  1.5, 𝑀 =
 1.0 and 𝑁 =  1.0  

 

Figure 6: Impact of velocity slip parameter 𝑑 on 

velocity profile 𝑓𝛿
′(𝜉) for 𝑚 =  1.0, 𝑃𝑟 =  5.0, 𝛽 =

 0.4, 𝑁𝑡 =  𝑁𝑏 =  0.3, 𝐸𝑐 =  0.1, 𝑆𝑐 =  1.5, 𝑁 =
 𝑀 =  1.0 
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Table 2:  Values of skin friction coefficient 𝑓𝛿
′′(0), local Nusselt number −𝜃𝛿

′ (0) and local Sherwood number −𝜙𝛿
′ (0) 

for crucial fluid parameters 𝛽, 𝑑, 𝑁 𝑏, 𝑁 𝑡, 𝐸𝑐, 𝑆𝑐, 𝑀 and 𝑁 with fixed entries of 𝑃𝑟 =  5.0 and 𝑚 =  1.0  
 

𝛽 𝑑 𝑁𝑏 𝑁𝑡 𝐸𝑐 𝑆𝑐 𝑀 𝑁 𝑓𝛿
′′(0) −𝜃𝛿

′ (0) −𝜙𝛿
′ (0) 

0.3 
0.4 
0.5 

0.1 0.1 0.2 0.4 1.5 1.0 1.0 -0.62674 
-0.69140 
-0.74178 

0.72369 
0.78127 
0.82246 

-0.41288 
-0.55822 
-0.66610 

0.4 0.00 
0.05 
0.15 

0.1 0.2 0.4 1.5 1.0 1.0 -0.75593 
-0.72203 
-0.66354 

0.65356 
0.72255 
0.83156 

-0.27946 
-0.42910 
-0.67041 

0.4 0.1 0.05 
0.10 
0.15 

0.2 0.4 1.5 1.0 1.0 -0.69140 
-0.69140 
-0.69140 

0.82355 
0.78127 
0.74045 

-1.77998 
-0.55822 
-0.15292 

0.4 0.1 0.1 0.2 
0.3 
0.4 

0.4 1.5 1.0 1.0 -0.69140 
-0.69140 
-0.69140 

0.78127 
0.73298 
0.68790 

-0.55822 
-0.95811 
-1.28267 

0.4 0.1 0.1 0.2 0.0 
0.1 
0.2 

1.5 1.0 1.0 -0.69140 
-0.69140 
-0.69140 

2.18627 
1.83840 
1.48829 

-3.19235 
-2.54049 
-1.88419 

0.4 0.1 0.1 0.2 0.4 1.1 
1.4 
1.7 

1.0 1.0 -0.69140 
-0.69140 
-0.69140 

0.81074 
0.78800 
0.76889 

-0.78101 
-0.60993 
-0.46155 

0.4 0.1 0.1 0.2 0.4 1.5 0.8 
1.0 
1.2 

1.0 -0.65763 
-0.69140 
-0.72329 

0.95086 
0.78127 
0.61783 

-0.85564 
-0.55882 
-0.27004 

0.4 0.1 0.1 0.2 0.4 1.5 1.0 1.0 
1.1 
1.2 

-0.69140 
-0.68832 
-0.68551 

0.78127 
0.75748 
0.73563 

-0.55822 
-0.50892 
-0.46362 

 

Figure 5 illustrates the velocity profile 𝑓𝛿
′(𝜉) variation against Casson fluid parameter 𝛽 (0.3, 0.4, 0.5). A decrease in 

velocity profile is noticed for higher Casson fluid parameter 𝛽. This graph elaborates that enhancement in the value of 

Casson fluid parameter 𝛽 will declines yield stress that hurdles the free movement of fluid particles and hence boundary 

layer thickness reduces. Thus, fluid velocity decreases. Consequently, declination in the value of skin friction 

coefficient 𝐶𝑓𝑥 is observes as seen in Table 2.  Figure 6 deliberates the behavior of velocity variation for prominent 

values of velocity slip parameter 𝑑 (0.00, 0.05, 0.15). This graph exhibits that fluid velocity as well as slip velocity 

increases for higher values velocity slip parameter 𝑑. This is due to the presence of velocity slip parameter. Hence, 

velocity of fluid flow close to the surface of sheet disparate the velocity of stretching sheet. Also, Table 2 gives valuable 

information that larger value of velocity slip parameter d falls down the numeric value of skin friction coefficient in 

absolute sense. 
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Figure 7: Impact of magnetic parameter 𝑀 on velocity 

profile 𝑓𝛿
′(𝜉)  for 𝑚 =  1.0, 𝑃𝑟 =  5.0, 𝛽 =  0.4, 𝑑 =

 0.1, 𝑁𝑏 =  0.3, 𝑁𝑡 =  0.3, 𝑆𝑐 =  1.5, 𝐸𝑐 =  0.1 and 

𝑁 =  1.0 

Figure 8: Impact of non linear stretching parameter 𝑁 

on velocity profile 𝑓𝛿
′(𝜉) for 𝑚 =  1.0, 𝑃𝑟 =  5.0, 𝛽 =

 0.4, 𝑁𝑡 =  𝑁𝑏 =  0.3, 𝐸𝑐 =  0.1, 𝑑 = 0.1, 𝑆𝑐 =

 1.5, 𝑀 =  1.0 

Figure 7 manifests variation in fluid velocity against magnetic parameter 𝑀 (0.8, 1.0, 1.2). This figure shows that 

existence of magnetic parameter 𝑀 resists the fluid particle to move freely and main reason behind the resistance is 

that magnetic parameter 𝑀 produces Lorentz force and this magnetism behavior can be adopted for controlling the 

fluid movement. Thus, enhancement in the value of magnetic parameter 𝑀 causes the declination of velocity 

distribution. Figure 8 portraits the nanofluid velocity variation under the influence of non-linear stretching 

parameter 𝑁 (1.0, 1.1, 1.2). This figure prevailed that nanofluid velocity decreases due to more interruption surrounded 

by different layers of fluid and this is because of presence of non-linear stretching parameter 𝑁. Consequently, velocity 

gradient increases i.e. increment in 𝑓𝛿
′(𝜉) is observed that can be seen in Table 2.

  

 

Figure 9: Impact of Casson fluid parameter 𝛽 on 

temperature profile 𝜃𝛿(𝜉) for 𝑚 =  1.0, 𝑃𝑟 =
 5.0, 𝑑 =  0.1, 𝑁𝑡 =  𝑁𝑏 =  0.3, 𝐸𝑐 =  0.1, 𝑆𝑐 =
 1.5, 𝑁 =  𝑀 =  1.0 

 

Figure 10: Impact of velocity slip parameter 𝑑 on 

temperature profile 𝜃𝛿(𝜉) for 𝑚 =  1.0, 𝑃𝑟 =
 5.0, 𝛽 =  0.4, 𝑁𝑡 =  𝑁𝑏 =  0.3, 𝐸𝑐 =  0.1, 𝑆𝑐 =
 1.5, 𝑁 =  𝑀 =  1.
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Figure 9 depicts the behavior of Casson fluid parameter 𝛽 (0.3, 0.4, 0.5) on temperature distribution 𝜃𝛿(𝜉). 

This figure indicates that as Casson fluid parameter 𝛽 increases, fluid temperature decreases and this graph elaborates 

that enhancement in the value of Casson fluid parameter 𝛽 declines velocity that will reduce the heat transfer rate and 

hence fluid temperature declines. Additionally, a slight decrease in temperature is noticed as seen in Figure 9. 

Consequently, enhancement in local Nusselt number Nux is noticed that can be seen in Table 2.  

Figure 10 shows the variation of velocity slip parameter 𝑑 (0.00, 0.05, 0.15) on temperature distribution 

𝜙𝛿(𝜉). This graph shows that as velocity slip parameter 𝑑 rises, boundary layer thickness declines and this is due to 

the presence of magnetic field as well as thermal jump of the fluid particles. Thus, nanoparticle temperature distribution 

declines for higher values of velocity slip parameter and hence rate of heat transportation increases that will increases 

the value of local Nusselt number. 

 

 

Figure 11: Impact of Brownian motion parameter 𝑁𝑏 

on temperature profile  𝜃𝛿(𝜉) for 𝑚 =  1.0, 𝑃𝑟 =
 5.0, 𝛽 =  0.4, 𝑑 =  0.1, 𝑆𝑐 =  1.5, 𝐸𝑐 =  0.1, 𝑁𝑡 =
 0.3, 𝑀 =  1.0 and 𝑁 =  1.0 
 

Figure 12: Impact of thermophoresis parameter 𝑁𝑡 on 

temperature profile  𝜃𝛿(𝜉) for 𝑚 =  1.0, 𝑃𝑟 =
 5.0, 𝛽 =  0.4, 𝑑 =  0.1, 𝑁𝑏 =  0.3, 𝐸𝑐 =  0.1, 𝑆𝑐 =
 1.5, 𝑁 =  𝑀 =  1.0

Figure 11 examines temperature distribution variation against the fluid parameter Brownian motion 

parameter 𝑁𝑏 (0.05, 0.10, 0.15). The striking of atoms or molecules of the fluid particles with each other will create 

an arbitrary motion called Brownian motion of suspended (pendulous) particles and that will enhances width of 

boundary layer. Hence, fluid temperature increases for higher Brownian motion parameter 𝑁𝑏 and in consequence 

local Nusselt number decreases.  

Figure 12 deliberates the impact of fluid temperature under the consequence of thermophoresis 

parameter 𝑁𝑡 (0.2, 0.3, 0.4). Temperature gradient falls down for higher values of thermophoresis parameter 𝑁𝑡 that 

result in reduction of conduction of nanoparticles. Thus, width of boundary layer enhances due to reallocation of 

ultrafine particles from hotter to colder part and hence, temperature enhances for higher thermophoresis parameter 𝑁𝑡 

that can be seen in Figure 12. Figure 13 demonstrate fluid temperature variation against Eckert number 

𝐸𝑐 (0.0, 0.1, 0.2). A dimensionless quantity 𝐸𝑐 is the fraction of advective transportation and heat dissipation potential. 

As Eckert number 𝐸𝑐 enhances, thermal buoyancy effect raises that results in increasing temperature and that is the 

main reason behind the conversion of kinetic energy into thermal energy. Hence, fluid temperature enhances because 

of this conversion effect. Consequently, declination in Nusselt number 𝑁𝑢𝑥 is noticed that can be seen via Table 2. 

Figure 14 reflects variation of temperature distribution against magnetic parameter 𝑀. With an increase in magnetic 

parameter 𝑀, velocity profile decreases because of generation of Lorentz force that consequently intensify the 

boundary thickness and rate of heat transportation and hence fluid temperature enhances as shown via Figure 14. 



Journal of Thermal Engineering, Research Article, Vol. 7, No. 2, Special Issue 13, pp. 1-17, February, 
2021 

 

12 

 Figure 13: Impact of Eckert number 𝐸𝑐 on 

temperature profile  𝜃𝛿(𝜉) for 𝑚 =  1.0, 𝑃𝑟 =
 5.0, 𝛽 =  0.4, 𝑑 =  0.1, 𝑆𝑐 =  1.5, 𝑁𝑏 =  0.3, 𝑁𝑡 =
 0.3, 𝑀 =  1.0 and 𝑁 =  1.0 

Figure 14: Impact of magnetic parameter 𝑀 on 

temperature profile 𝜃𝛿(𝜉) for 𝑚 =  1.0, 𝑃𝑟 =  5.0, 𝛽 =
 0.4, 𝑑 =  0.1, 𝑁𝑏 = 𝑁𝑡 =  0.3, 𝐸𝑐 =  0.1, 𝑆𝑐 =
 1.5, 𝑁 =  1.0 

Figure 15: Impact of non-linear stretching parameter 𝑁 

on temperature profile  𝜃𝛿(𝜉) for 𝑃𝑟 =  5.0, 𝑚 =
 1.0, 𝛽 =  0.4, 𝑑 =  0.1, 𝑆𝑐 =  1.5, 𝐸𝑐 =  0.1, 𝑁𝑡 =
 𝑁𝑏 =  0.3 and 𝑀 =  1.0 

Figure 16: Impact of Casson fluid parameter 𝛽 on 

concentration profile  𝜙𝛿(𝜉) for 𝑚 =  1.0, 𝑃𝑟 =
 5.0, 𝑑 =  0.1, 𝑁𝑡 =  𝑁𝑏 =  0.3, 𝐸𝑐 =  0.1, 𝑆𝑐 =
 1.5, 𝑁 =  𝑀 =  1.0 

 

Figure 15 portraits variation for temperature distribution against non-linear stretching parameter 𝑁. 

Momentum boundary layer thickness decreasing with increasing non linearity behavior of stretching sheet that will 

enhances thickness of thermal boundary and therefore fluid temperature enhances for higher values of non-linear 

stretching parameter 𝑁.  

Figure 16 reveals the variation of nanoparticle volume fraction under the influence of Casson fluid 

parameter 𝛽 (0.3, 0.4, 0.5). An intensification in the value of Casson fluid parameter 𝛽 results in the enhancement of 

viscous behavior of fluid flow. Because of this viscous nature domination, nanoparticle concentration rises as illustrated 

via Figure 16. Figure 16 prevailed that this effect is more pronounced for steady state flow. 

Figure 17 manifests the impact of velocity slip parameter 𝑑 (0.00, 0.05, 0.15) on nanoparticle 

concentration 𝜙𝛿(𝜉). With an increase in the value of velocity slip parameter 𝑑, nanoparticle concentration enhances 

that consequently declines the numeric value of local Sherwood number as seen in Table 2.  
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Figure 17: Impact of velocity slip parameter 𝑑 on 

concentration profile  𝜙𝛿(𝜉) for 𝑚 =  1.0, 𝑃𝑟 =
 5.0, 𝛽 =  0.4, 𝑁𝑡 =  𝑁𝑏 =  0.3, 𝐸𝑐 =  0.1, 𝑆𝑐 =
 1.5, 𝑁 =  𝑀 =  1.0 

 

Figure 18: Impact of Brownian motion parameter 𝑁𝑏 

on concentration profile  𝜙𝛿(𝜉) for 𝑚 =  1.0, 𝑃𝑟 =
 5.0, 𝛽 =  0.4, 𝑑 =  0.1, 𝑁𝑡 =  0.3, 𝐸𝑐 =  0.1, 𝑆𝑐 =
 1.5, 𝑀 =  𝑁 =  1.0

Figure 18 manifests the impact of Brownian motion parameter 𝑁𝑏 (0.05, 0.10, 0.15) on nanoparticle 

concentration 𝜙𝛿(𝜉). With an increase in the value of Brownian motion parameter 𝑁𝑏, fluid particles collides with 

each other with higher speed which results in increase in the nanoparticle concentration and consequently, local 

Sherwood number reduces as depicted in the Table 2. 

Figure 19 portraits variation for nanoparticle volume fraction 𝜙𝛿(𝜉) against thermophoresis 

parameter 𝑁𝑡 (0.2, 0.3, 0.4). This graph shows that with an increase in thermophoresis parameter, nanoparticle 

concentration increases. Basically, in case of thermophoresis force applied by a particle on the other particle will 

generates the movement of particles from hotter to colder part and hence fluid moves from hotter to colder region and 

hence intensification in the nanoparticle volume fraction is observed via Figure 19.  

 

 

Figure 19: Impact of thermophoresis parameter 𝑁𝑡 on 

concentration profile 𝜙𝛿(𝜉) for 𝑚 =  1.0, 𝑃𝑟 =
 5.0, 𝛽 =  0.4, 𝑁𝑏 =  0.3, 𝑑 = 0.1, 𝐸𝑐 =  0.1, 𝑆𝑐 =
 1.5, 𝑁 =  𝑀 =  1.0 

Figure 20: Impact of Schmidt number 𝑆𝑐 on 

concentration profile 𝜙𝛿(𝜉) for 𝑚 =  1.0, 𝑃𝑟 =
 5.0, 𝛽 =  0.4, 𝑑 =  0.1, 𝑁𝑡 =  0.3, 𝐸𝑐 =  0.1, 𝑁𝑏 =
0.3, 𝑀 =  𝑁 =  1.0
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Figure 21: Impact of magnetic parameter 𝑀 on concentration profile  𝜙𝛿(𝜉) for 𝑚 =  1.0, 𝑃𝑟 =  5.0, 𝛽 =  0.4, 𝑑 =
 0.1, 𝑁𝑡 =  𝑁𝑏 =  0.3, 𝐸𝑐 =  0.1, 𝑆𝑐 =  1.5 and 𝑁 =  1.0 

 

Figure 20 portraits the impact of Schmidt number 𝑆𝑐 (1.1, 1.4, 1.7) on profile of nanoparticle concentration. 

Intensification in the value of physical parameter Sc, declination in mass diffusivity is observed. Due to this effect 

nanoparticle concentration decreases. Figure 21 reflects the variation for nanoparticle concentration 𝜙𝛿(𝜉) against the 

magnetic parameter 𝑀 (0.8, 1.0, 1.2). With increase in magnetic parameter 𝑀, rate of mass transportation decreases 

that consequently increase nanoparticle concentration and hence reduction in the value of local Sherwood number is 

notice as seen in Table 2.

CONCLUSION 

Present study reflects the heat, mass and flow transportation of Magnetohydrodynamic (MHD) Casson 

nanofluid towards a sheet which is stretched non-linearly. Final outcomes of the current study incorporates the 

significance of Ohmic and Viscous dissipation effects in addition to the MHD Casson fluid flow velocity profile, 

temperature distribution and nanoparticle volume fraction. Similarity conversion is used for transforming partial into 

ordinary differential equations. Key findings of current analysis are summarized as:  

1. Skin friction coefficient elevates with increment in magnetic parameter 𝑀 due to produced Lorentz force that 

ultimately improves local Sherwood number along with Nusselt number for higher magnetic parameter  𝑀.  

2. A declination in the value of Velocity profile is observed with variation in the values of Casson fluid 

parameter 𝛽, velocity slip parameter 𝑑 whereas rises for larger values of non-linear stretching parameter 𝑁.  

3. Fluid temperature enhances for greater values of physical parameters Eckert number 𝐸𝑐, Brownian motion 

parameter 𝑁𝑏 and thermophoresis parameter 𝑁𝑡. On the other hand, it reduces for higher values of Casson 

fluid parameter 𝛽 and velocity slip parameter 𝑑. 

4. An enhancement in the profile of nanoparticle concentration is noticed for greater values of thermophoresis 

parameter 𝑁𝑡, velocity slip parameter 𝑑, Casson fluid parameter 𝛽. Whereas, it declines for Brownian motion 

parameter 𝑁𝑏 and Schmidt number 𝑆𝑐. 

 

It is hoped that current analysis serves impetus for the scientists to develop technological applications over 

stretching surfaces. Results of the present study helps to control heat transfer rate in different manufacturing processes, 

biological systems to produce the quality product this analysis can be extended to shrinking surface as well. 
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NOMENCLATURE  
 

𝑥, 𝑦  Cartesian coordinates 

𝐵  Magnetic field intensity 

𝑈  Stream velocity 

𝑎  Positive constant 

𝑚  Surface temperature parameter 

𝑆𝑐  Schmidt number 

𝐶  Concentration 

𝐶𝑤  Nanoparticle volume fraction 

𝑞𝑚  Mass flux 

𝑃𝑟  Prandtl number 

𝑁𝑢𝑥  Nusselt number  

𝑁𝑡  Thermophoresis parameter  

𝑇∞  Ambient temperature attained 

𝑆ℎ𝑥  Sheerwood number 

𝑣  Vertical velocity 

𝐷𝐵  Brownian diffusion coefficient  

𝑁𝑏  Brownian motion parameter 

𝑁  Non linear stretching parameter 

𝑇  Temperature 

𝑢𝑤  Stretching velocity 

𝐷𝑇   Thermophoresis diffusion coefficient 

𝑢𝑠  Slip velocity 

𝑙  Slip length 

𝑇𝑤  Temperature at the sheet 

𝑞𝑤  Hass flux 

𝐶∞  Ambient nanoparticle volume fraction 

𝑢  Horizontal velocity 

𝑀  Magnetic parameter 
 

Greek symbols 

𝜈  Kinematic viscosity 

𝛽  Casson fluid parameter 

𝜎  Electrical conductivity  

𝜉  Similarity variable 

𝜌𝑓  Density of base fluid 

𝛼𝑚  Thermal diffusivity 

𝜏  Ratio of heat capacities  

𝜃𝛿   Non-dimensional temperature  

𝜙𝛿   Non-dimensional nanoparticle concentration 
 

Subscripts  

𝑝  Particle 

∞  Ambient condition 

𝑓  Fluid 

𝑤               Wall 
 

Superscript 

( )′                       Prime denotes derivative w.r.t 𝜉   
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