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ABSTRACT 

In this paper, we study conharmonic curvature tensor of nearly cosymplectic manifolds with 
generalized Tanaka-Webster connection and we give a conharmonically flat nearly cosymplec-
tic manifold with respect to the connection.
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INTRODUCTION 

Recently, many studies have been conducted on nearly 
structures by different mathematicians in different mani-
folds. If we talk about some of them, the notion of a nearly 
Sasakian manifold was introduced by Blair and his collab-
orators in [5], while nearly cosymplectic manifolds were 
studied by Blair and Showers in [2]–[4] In the subsequent 
literature on the topic, the papers on Olszak were quite 
important [14],[15] for nearly Sasakian manifolds and 
those of Endo [8],[9] on nearly cosymplectic manifolds.

Later on, these two classes have played a role in the 
Chinea-Gonzalez’s classification of almost contact metric 
manifolds [7]. They have also appeared in the study of har-
monic almost contact structures (cf. [10],[16]). An almost 
contact metric structure (ϕ,η,ξ,g) satisfying (∇X ϕ)X = 0 is 

called a nearly cosymplectic structure. If we consider S5 as 
a totally geodesic hypersurface of S6; then it is known that  
S5 has a non cosymplectic nearly cosymplectic structure. It 
was shown that the normal nearly cosymplectic manifolds 
are cosymplectic (see [5]). In [12], Loubeau and Vergara-
Diaz proved that a nearly cosymplectic structure, once 
identified with a section of a twistor bundle, always defines 
a harmonic map. On the other hand, almost contact man-
ifolds with Killing structures tensors were defined in [6] as 
nearly cosymplectic manifolds. Later on, Blair and Showers 
[4] studied nearly cosymplectic structure (ϕ,η,ξ,g) on a
Riemannian manifold M with η closed from the topological 
viewpoint.

In addition, Tanaka-Webster connection is canonical 
affine connection defined on a non-degenerate pseudo-
Hermition CR-manifolds. A generalized Tanaka-Webster 
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GENARALIZED TANAKA-WEBSTER  
CONNECTION ON NEARLY COSYMPLECTIC 
MANIFOLDS

The generalized Tanaka-Webster connection ∇̃ on a 
almost contact metric manifold M is defined by

( ) ( )( ) ( )X X X XY Y Y Y X Yη ξ η ξ η φ∇ =∇ − ∇ + ∇ −� 	 (3.1)

for all vector fields X and Y, where ∇ is Levi-Civita con-
nection on M.

If we use (2.6) and (2.7) in (3.1) we get,

( ) ( )( , )X XY Y Y HX g HX Y X Yη ξ η φ∇ =∇ − + −� 	(3.2)

for all vector fields X and Y. 
By taking Y = ξ in (3.2) and using (2.6) we obtain,

0Xξ∇ =� (3.3)

Thus we can state that, the characteristic vector field of 
a nearly cosymplectic manifold is paralel vie generalized 
Tanaka-Webster connection. Let M be an n-dimensional 
nearly cosymplectic manifold. The curvature tensor R̃ of M
with respect to the connection ∇̃ is given by,

[ , ]( , ) X Y Y X X YR X Y Z Z Z Z=∇ ∇ −∇ ∇ −∇� � � � �� (3.4)

Than, after a long computation in a nearly cosymplectic 
manifold, we have,

R̃(X,Y)Z = �R(X,Y)Z + η(X)(∇Yϕ)Z – η(Y)(∇Xϕ)Z
– η(X)η(Z) H2Y + η(Y)η(Z)H2X
+ η(X)η(Z)ϕHY – η(Y)η(Z)ϕHX
+ g(Z,HY)HX – g(Z,HX)HY
– 2g(Y,HX)ϕZ + η(X)g(H2Y,Z)ξ
– η(Y)g(H2X,Z)ξ + η(X)g(HY,ϕZ)ξ
– η(Y)g(HX,ϕZ)ξ (3.5)

By taking Z = ξ in (3.5) we get,

R̃(X,Y)ξ = R(X,Y)ξ – η(X)H2Y + η(Y)H2X	 (3.6)

The Ricci tensor S̃ and the scalar curvature r̃ of a nearly 
cosymplectic manifold M with respect to the connection ∇̃ 
is given by,

S̃(Y,Z) = �S(Y,Z) – η(Y)div(ϕ)Z + η(Y)η(Z)tr(H2) 
– η(Y)η(Z)tr(ϕH) + g(Z,HY)tr(H)
+ 2g(HY,ϕZ), (3.7)

r̃ = r + (2m + 1)tr(H²),	
r̃ = 0.	 (3.8)

By taking Z = ξ in (3.7) we get,

S̃(Y,ξ) = S(Y,ξ) + η(Y)tr(H2),	
S̃(Y,ξ) = 0	 (3.9)

connection has been introduced by Tanno [13] as a gener-
alization of Tabaka-Webster connection [11],[12]. Contact 
manifolds with generalized Tanaka-Webster connection 
were studied by many researchers [17]-[21].

The paper is organized as: after introduction section, in 
Section 2, we give some information about almost contact 
Riemannian manifolds and accordingly, nearly cosymplec-
tic manifolds and the fundamental curvature properties 
they provide. In Section 3, we discussed some equations 
provided by the Riemannian curvature tensor. Later, we 
have obtained the form of Ricci curvature tensor, scalar 
curvature tensor and canhormanic curvature tensor on 
nearly cosypmlectic manifolds with generalized Tanaka-
Webster connection. Finally, in the last section, we study 
conharmonically flat nearly cosypmlectic manifolds with 
generalized Tanaka-Webster connection.

PRELIMINARIES

Let (M,ϕ,η,ξ,g) be an (n = 2m + 1)-dimensional differen-
tiable manifold M is called an almost contact Riemannian 
manifold, where ϕ is a (1; 1)-tensor field, ξ is the structure 
vector field, η is a 1-form and g is the Riemannian metric. 
This structure satisfies the following conditions, 

ϕ2X = –X + η(X)ξ (2.1)
η(ξ) = 1, ϕξ = 0, η ∙ ϕ = 0	 (2.2)

g(ϕX,ϕY) = g(X,Y) – η(X)η(Y)	 (2.3)
g(X,ϕY) = –g(ϕX,Y) and g(X,ξ) = η(ξ)	 (2.4)

for any vector fields X and Y on M [1].
With condition (2.5) an almost contact Riemannian 

manifold M is said to be a nearly cosymlectic manifold

	 (∇Xϕ)Y + (∇Yϕ)X = 0 and (∇Xϕ)X = 0	 (2.5)

It is said to be nearly cosymplectic manifold if the fol-
lowing conditions are satisfying,

∇Xξ = HX,g(∇Xξ,Y) + g(Y,∇Xξ) = 0 and (∇Xϕ)ξ = –ϕHX		
(2.6)

where ∇ denotes the Levi-Civita connection. 
In addition on a nearly cosymplectic manifold M, the 

following relations are hold [1].

(∇Xη)Y = g(∇Xξ,Y) = g(HX,Y)	 (2.7)
R(ξ,X,Y,Z) = –g((∇XH)Y,Z) = η(Y)g(H2X,Z) – η(Z)g(H2X,Y) 

(2.8)
η(R(Y,Z)X) = g((∇XH)Y,Z)	 (2.8)

S(X,ξ) = –η(X)tr(H2)	 (2.9)

where R is stated the Riemannian curvature tensor, S is 
shown the Ricci tensor and H is a skew-symmetric tensor 
field.
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And thus,
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In a nearly cosymplectic manifold, using (3.5), (3.7) and 
(3.9) in (3.11), we get

2

( , )    ( ) ( )( ) ( ) ( , )  
1 [ ( , ) ( ) ( ) ( )

2
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( , ) ( )

2 ( ,

( )

) ],

YK Y Z Z Y Z Z HY g HY Z
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n

Y Z tr H Z tr H Y
Y Z tr H g Z HY tr H

g HY Z
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−

+ +
− +
+

(3.14)
And

1( ( , ) )  [ ( , ) ( ) ( , ) ( )
2

( ) ( ) ( ) ( ) ( ) ( )
( , ) ( ) ( ) ( , ) ( ) ( )

2 ( , ) ( ) 2 ( , ) ( )].

( )
K X Y Z S Y Z X S X Z Y

n
X div ZY Y div ZX

g Z HY tr H X g Z HX tr H Y
g HY Z X g HX Z Y

η η η

η φ η η φ η
η η

φ η φ η

=− −
−

+ −
+ −
+ −

(3.15)

CONHARMONICALLY FLAT NEARLY 
COSYMPLECTIC MANIFOLDS WITH  
RESPECT TO THE CONNECTION ∇̃

Assume that, M  is conharmonically flat nearly cosym-
lectic manifold with respect to the connection ∇̃. That is,
K̃ = 0. Then from (3.11), we have

1( , )   [ ( , ) ( , )
( 2)

 ( , ) ( , ) ].

R X Y Z S Y Z X S X Z Y
n

g Y Z QX g X Z QY

= −
−

+ −

� ��

� �
	 (4.1)

This gives

Q̃Y = QY + tr(H²)Y, (3.10)
.  Q̃Y = 0.	

Theorem 1. For a nearly cosymplectic manifold M with 
generalized Tanaka-Webster connection ∇̃,

a. R̃(X,Y)Z = –R̃(Y,X)Z,
b. R̃(X,Y,Z,W) = –R̃(X,Y,W,Z),
c. R̃(X,Y,Z,W) – R̃(Z,W,X,Y) = η(X)g((∇Yϕ)Z,W)

– η(Y)g((∇Xϕ)Z,W) – η(Z)g((∇Wϕ)X,Y)
+ η(W)g((∇Zϕ)X,Y) + 2η(X)η(Z)g(ϕHY,W)
– 2η(Y)η(Z)g(ϕHX,W) – 2η(Y)η(W)g(ϕHX,Z)
– 2η(X)η(W)g(ϕHY,Z) + 2g(W,HZ)g(ϕX,Y)
– 2g(Y,HX)g(ϕZ,W),

d. R̃(X,Y)Z + R̃(Y,Z)X + R̃(X,Z)Y = 2η(Y)(∇Zϕ)X
+ 2η(Y)η(Z)H2X – 2η(X)η(Y)H2Z – 2η(Y)η(Z)ϕHX
+ 2η(X)η(Y)ϕHZ – 2g(Z,HX)HY + 2g(Y,HZ)ϕX
+ 2g(X,HZ)ϕY + 2g(X,HY)ϕZ + 2η(X)g(H2Z,Y)ξ
– 2η(Z)g(H2X,Y)ξ + 2η(Y)g(HZ,φX)ξ,

f. The Ricci tensor S ̃ is not symmetric.

In a nearly cosymplectic manifold M of dimension n >
2, the conharmonic curvature tensor K̃ with respect to the
generalized Tanaka-Webster connection ∇̃ is given by

1( , )  ( , ) ( , ) ( , )  
2

( , ) ( , )
( )

K X Y Z R X Y Z S Y Z X S X Z Y
n

g Y Z QX g X Z QY

= − −−
+ − 

� �� �

� �

(3.11)

for all vector fields X, Y and Z on M, where R ̃, S ̃ and Q ̃
are the Riemannian curvature tensor, Ricci tensor and Ricci 
operator, respectively with respect to the connection ∇̃.

Using (3.5), (3.7) and (3.9) in (3.11), we get
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(3.13)
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Theorem 2. For a conharmonically flat nearly cosymplectic 
manifold with respect to generalized Tanaka-Webster con-
nection, the scalar curvature is (2m + 1)tr(H²). 
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folds equipped with Tanaka-Webster connection. Also, 
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conharmonically symmetric, ϕ-conharmonicallyflat, 
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equipped with Tanaka-Webster connection can be 
examined.
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