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ABSTRACT

The development of a novel hybrid algorithm by modifying the arithmetic optimization 
algorithm (AOA) with the aid of simulated annealing technique is discussed in this paper. The 
novel algorithm, named modified arithmetic optimization algorithm (mAOA), is proposed 
as an effective tool for optimizing power system stabilizer (PSS) adopted in a single-machine 
infinite-bus power system. To perform the assessments, MATLAB/Simulink software was used. 
The evaluations on the proposed algorithm are initially performed using several benchmark 
functions that have unimodal and multimodal natures. The results are then compared with 
five of the other competitive approaches (arithmetic optimization algorithm, simulated 
annealing algorithm, genetic algorithm, particle swarm optimization and gravitational search 
algorithm). The comparisons with respect to those algorithms demonstrate the great promise 
of the constructed hybrid mAOA algorithm. This shows the greater balance between global 
and local search stages achieved by the mAOA algorithm. The performance of the developed 
mAOA algorithm is also assessed through designing an optimally performing PSS for further 
evaluation which allows the observation of its capability for complex real-world engineering 
problems. To do so, PSS damping controller is formulated as an optimization problem and 
the constructed mAOA algorithm is used to search for optimal controller parameters to 
demonstrate the applicability and the greater performance of the proposed hybrid algorithm 
for such a complex real-world engineering problem. The obtained results for the latter case are 
compared with the sine-cosine and symbiotic organisms search algorithms as they are the best 
performing reported algorithms. The comparisons have demonstrated the superiority of the 
mAOA algorithm over reported best performing algorithms in terms of PSS design, as well.
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INTRODUCTION

One of the main challenges in power systems is to deal 
with the low frequency oscillations as they may cause the 
failure in terms of integrity of power system interconnec-
tions if they are not damped appropriately. Such a failure is 
highly undesired as it causes interrupts in terms of power 
supply which may lead to financial loss. Due to its high 
impact on the stability of the system, it is quite vital to damp 
out the low frequency oscillations so that the transfer capa-
bility of the power system can be preserved. A power system 
stabilizer (PSS) is one of the mainly employed structures to 
deal with such oscillations for both single-machine infinite-
bus (SMIB) and multi-machine power systems. However, 
such structures are required to be designed appropriately by 
considering the nature of the power system.

In terms of designing conventional PSS, a linearized 
model is considered which means a nominal operating 
point is taken into account to determine the parameters of 
the PSS. However, due to nonlinear nature of power sys-
tems, consistent fluctuations over a wide range may occur 
which makes the conventional PSS insufficient to achieve 
an optimum performance. Several approaches such as 
pole shifting and pole placement along with self-tuning 
regulators and feedback linearization are available for PSS 
design. However, longer computational times are the lack 
of those approaches [1]. To address the latter issue and to 
come up with a more efficient solution, metaheuristic algo-
rithms have widely been utilized recently as an alternative 
method [2].

There has been a breathtaking effort in terms of devel-
opment of new metaheuristic algorithms over the last 
decade for tackling with difficult and complex nonlinear 
optimization problems. Traditionally, deterministic opti-
mization schemes are used for solving optimization prob-
lems, however, those schemes suffer from unbalanced 
exploitation-exploration, local optima stagnation and being 
derivative dependent [3]. Because of those major issues, a 
growing interest has shifted towards stochastic optimiza-
tion approaches [4]. The metaheuristic algorithms are sto-
chastic optimization techniques that are simple, durable, 
self-organized and skillful approaches [5]. Few of the recent 
examples of metaheuristic algorithms are moth-flame opti-
mization algorithm [6], elephant herding optimization [7], 
whale optimization algorithm [8], grasshopper optimiza-
tion algorithm [9], Henry gas solubility optimization [10] 
and Harris hawks optimization algorithm [11]. Meanwhile, 
all the listed algorithms would exhibit an equivalent perfor-
mance on average in case they were used for all potential 
optimization problems [12] which means some of them 
would present greater performance for specific problems. 

The promise of metaheuristic algorithms has already 
been demonstrated in terms of offline tuning of PSS param-
eters by considering a wide range of operating conditions. 
Some of the recently reported metaheuristic algorithms 

based PSS design examples can be listed as salp swarm 
algorithm [13], artificial bee colony algorithm [14], chaotic 
versions of sunflower optimization [15] and particle swarm 
optimization [16], grasshopper optimization [17], particle 
swarm optimization [18], kidney-inspired algorithm [19], 
farmland fertility algorithm [20], sine-cosine algorithm 
[1] along with its modified version with grey wolf opti-
mization [21] and improved whale optimization [22]. The
demonstrated promise of those algorithms has motivated
this study to further improve the PSS ability by utilizing a
more recent metaheuristic algorithm as a competitive and
efficient approach in terms of designing the related param-
eters. Therefore, arithmetic optimization algorithm (AOA)
[23] has been used for this study which is one of the latest
published and population-based metaheuristic algorithms.

The greater promise of the arithmetic optimization 
algorithm has so far been demonstrated through several 
test functions and engineering design problems. It is fea-
sible to achieve a good exploration in arithmetic optimi-
zation algorithm. Considering this fact, the overall ability 
of this algorithm can further be improved via integrating 
another algorithm with better exploitative capability which 
would consequently lead to a better balance between explo-
ration and exploitation phases. In this way, the algorithm 
can avoid from local optima and the early convergence 
issue can be prevented. One of the popular algorithms that 
can be used to achieve such a structure is the simulated 
annealing (SA) technique [24]. The latter algorithm has 
an excellent local search ability that can easily be hybrid-
ized with another metaheuristic approach. Besides its easy 
implementable structure, it also does not require longer 
computational times which makes it an excellent candidate 
for hybridization. The latter case is another, and fundamen-
tal, motivation of this paper, therefore, simulated annealing 
technique has been integrated with the arithmetic optimi-
zation algorithm in order to construct a better structure.

Bearing the discussion so far in mind, this paper pro-
poses a novel hybrid algorithm, named modified arith-
metic optimization algorithm (mAOA), which has been 
developed by considering greater local search behavior 
of simulated annealing algorithm in order to enhance the 
capability of the arithmetic optimization algorithm. The 
constructed hybrid algorithm aims to address the issue 
related to lack of balance between exploration and exploita-
tion phases of the arithmetic optimization algorithm. The 
simulated annealing technique is used to operate on worse 
solutions such that the potential of neighborhood solutions 
is not neglected.

To evaluate the developed mAOA algorithm, MATLAB/
Simulink environment was used. The performance evalu-
ation was firstly carried out against benchmark functions 
of Step, Sphere, Rastrigin, Rosenbrock, Quartic, Griewank, 
Schwefel, and Ackley [25]. The obtained results on those 
well-known benchmark functions were comparatively 
assessed with respect to five other competitive approaches 
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determining the best solution from candidate solutions. In 
the initialization stage of this algorithm, a set of random 
solutions of X are generated as given in (1):
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In each iteration, the best candidate solution is the best 
obtained solution so far. After the initialization step, the 
search phases of exploration or exploitation are selected 
based on a function called Math Optimizer Accelerated 
(MOA) function which is given in (2):

MOA t Min t Max Min
tc c
M

( ) = + × −







 	 (2)

where the value of the function at current iteration is denoted 
by MOA(tc). The current iteration is represented by tc and 
has a range between 1 and maximum number of iterations 
(tM). The minimum and maximum values of the accelerated 
function are denoted by Min and Max, respectively. The 
exploration phase is conditioned by MOA function for r1 > 
MOA where r1 is a random number. In terms of exploration, 
the arithmetic operators of multiplication (M) or division 
(D) are used for random search on several regions.
Therefore, two different strategies, known as multiplication
and division search strategies, are exist in this algorithm
which are mathematically modeled as follows:
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where the solution of i in the next iteration is represented by 
xi(tc + 1), the jth position of solution i for current iteration 
is denoted by xi,j(tc) and the jth position of the best solution 
obtained so far is given by best(xj). In the respective equa-
tion, ∈ denotes a small integer number whereas μ repre-
sents the control parameter for search process adjustment. 
The upper and lower bounds of position j are represented 
by UBj and LBj, respectively. The MOP function given in the 
latter equation is used to represent Math Optimizer prob-
ability which is calculated as in (4):

MOP t
t
tc
c

M

( )
( )
( )

/

/= −1
1

1
(4)

such as original arithmetic optimization algorithm, simu-
lated annealing algorithm, genetic algorithm, particle 
swarm optimization and gravitational search algorithm. 
The achieved results have demonstrated highly competitive 
behavior of the proposed hybrid mAOA algorithm which 
is an indication of better balance between exploration and 
exploitation. After comparative assessment of the pro-
posed mAOA algorithm on those test functions, the design 
of a power system stabilizer (PSS), which is employed in 
a single-machine infinite-bus system, was considered as a 
complex real-world engineering problem for further per-
formance evaluation. The ability of the designed system 
was observed through comparing it with the PSS control-
lers that are designed by utilizing sine cosine and sym-
biotic organisms search algorithms [1] as the latter two 
structures had the same power system and the limits of the 
PSS parameters. The comparisons have also demonstrated 
better performance of the mAOA algorithm for such a 
complex real-world engineering problem, as well. In brief, 
the assessments have shown the mAOA algorithm to be a 
useful and efficient optimization algorithm for benchmark 
functions and PSS controller design for power system. The 
contribution of this work can be listed briefly as follows: 
(1) A novel hybrid structure, named mAOA, is achieved by
modifying arithmetic optimization algorithm with the aid
of simulated annealing technique. The constructed hybrid
mAOA algorithm has an enhanced balance between explo-
ration and exploitation phases; (2) The proposed mAOA
algorithm is utilized to achieve optimum parameters for
stabilizing power system; (3) The obtained statistical results
from unimodal and multimodal benchmark functions
demonstrate the greater capability of the mAOA algorithm
in terms of achieving the best, mean and standard devia-
tion values compared to simulated annealing algorithm,
genetic algorithm, particle swarm optimization, gravita-
tional search algorithm and original arithmetic optimiza-
tion algorithm; (4) The mAOA algorithm is shown to be
a good choice for complex optimization problems as it
enhances the transient stability of the SMIB system greatly
as well as providing improvement on the damping charac-
teristics of electromechanical modes; (5) Overall, the pro-
posed mAOA algorithm is demonstrated to be a powerful
approach for optimizing problems with different nature
compared to other reported competitive and best perform-
ing algorithms.

ARITHMETIC OPTIMIZATION ALGORITHM

The arithmetic optimization algorithm is one of the lat-
est reported population based stochastic algorithms which 
is inspired from a fundamental component of number 
theory known as the arithmetic [23]. It was proposed to 
solve optimization problems in a derivative-free manner. In 
this algorithm, the simple mathematical operators of addi-
tion, subtraction, multiplication, and division are used for 
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In Eq, (4), MOP(tc) is used to denote the value of the 
function for current iteration whereas α is a sensitive 
parameter which defines the accuracy of the search 
through iterations. The execution of M or D, given in Eq. 
(3), are decided based on another random number which is 
denoted by r2. M operator is performing the task, as can be 
seen from Eq. (3), for r2 > 0.5. In this stage, the D operator 
is neglected until the M operator completes the task. In case 
of r2 < 0.5, the execution of the task occurs vice versa (see 
Eq. (3)). In this way, the position update is performed for 
exploration phase. The mathematical operators of addition 
(A) and subtraction (S) are used for exploitation. As is the
case for exploration, the MOA function is also used for
conditioning this phase. As opposed to the exploration,
this phase is performed for r1 < MOA. The exploitation
phase of AOA is modeled using Eq. (5) where r3 is a random
number.
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The execution of A or S are decided based on the value 
of r3. The A operator is executed for r3 > 0.5 and S operator 
is neglected until A operator finishes the task whereas for 
r3 < 0.5 vice versa occurs.

SIMULATED ANNEALING ALGORITHM

The SA algorithm is basically a mathematical represen-
tation of the metallurgical annealing process [24]. The stated 
annealing process helps formation of uniform crystals 
because of adopted heating and cooling stages. A random 
solution, Xi, is the starting point of SA technique. This solu-
tion is then used to determine a neighborhood solution Xiʹ. 
The fitness values of both random solution and its neigh-
borhood solution are then computed and compared. In 
case of F(Xiʹ) < F(Xiʹ), SA sets Xi = Xiʹ. Apart from the latter 
arrangement, SA may still decide to use the neighborhood 
solution even if it does not satisfy the above condition. Such 
a case depends on the probability of p which is defined as 
follows.

p e F F X F X
F

T
i i

K= = ′ −
− ∆

∆; ( ) ( ) (6)

In here, F is the control parameter for the fitness 
whereas T is of the temperature. The SA does not perform 
the replacement of Xi by Xiʹ in case where p is smaller than 
a randomly generated number within [0, 1] range. On the 
other hand, the replacement would occur for a contrary 

case. The following equation is used by SA to reduce the 
temperature valueswhere the cooling coefficient (which has 
a random constant value in [0, 1]) is denoted by μ.

T Tk k+ =1 (7)

PROPOSED ALGORITHM

As discussed in the previous related sections, the 
original version of arithmetic optimization algorithm 
has been demonstrated to be successful for various test 
functions and a bunch of engineering design problems. 
Further improvement is feasible for this algorithm to 
make it an even more efficient tool to deal with problems 
of different natures. To achieve such an enhancement, 
simulated annealing algorithm has been used as a com-
plementary structure. Therefore, the developed mAOA 
algorithm is basically a hybridized structure that consists 
of the arithmetic optimization and simulated annealing 
algorithms.

In the developed mAOA algorithm, the simulated 
annealing technique deals with the exploitation enhance-
ment as it is a good local search algorithm [24]. The latter 
technique initializes random solutions as a necessary start-
ing point in the search space. The solution of the problem 
is then evaluated by generating and accepting/rejecting 
the neighbor solutions which shifts the solution towards 
the better neighbor’s solution to explore the search space. 
This behavior helps the arithmetic optimization algorithm 
to avoid local minimum. On the other hand, the original 
arithmetic optimization algorithm takes care of the global 
search. The flowchart given in Figure 1 illustrates the pro-
cess of the developed mAOA algorithm. As shown in the 
respective flowchart, the algorithm is initialized by the 
mAOA parameters and the candidate solutions. Then the 
arithmetic optimization algorithm is performed to find a 
global best solution. The latter obtained solution is used as 
an initial solution for the simulated annealing algorithm 
which is followed by the procedure of the latter tech-
nique. In each generation, the best solution of the arith-
metic optimization algorithm for the respective iteration 
is adopted as the starting solution of simulated annealing 
algorithm. In this way, the ability of the arithmetic opti-
mization algorithm is enhanced in terms of achieving bet-
ter solutions.

SIMULATION SETUP AND RESULTS

Benchmark Functions
In this study, four unimodal and four multimodal 

benchmark functions have been employed for initial per-
formance evaluation of the constructed hybrid mAOA 
algorithm. The details related to those benchmark func-
tions (name, mathematical definition, dimension (n), range 
and minimum point (Fmin)) are listed in Table 1.

μ

μ

μ
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Figure 1. Flowchart of the constructed mAOA algorithm.
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As it is obvious from the table, effective performance 
evaluation of the developed mAOA algorithm can be per-
formed via listed test functions since the ones from F1(x) 
to F4(x) (Sphere, Rosenbrock, Step, Quartic) are uni-
modal functions and good tools for exploitation assess-
ment whereas F5(x) to F8(x) (Schwefel, Rastrigin, Ackley, 
Griewank) are multimodal functions and good for evalu-
ating the exploration ability of the algorithms. A detailed 
description of the employed test functions can be found in 
Ref. [25].

Compared Algorithms
The performance of the developed hybrid mAOA algo-

rithm has comparatively been assessed against the previ-
ously mentioned benchmark functions using both popular 
(genetic algorithm, simulated annealing algorithm and 
particle swarm optimization) and recent (arithmetic opti-
mization algorithm and gravitational search algorithm) 
competitive algorithms.The initial parameters chosen for 
those algorithms are listed in Table 2.

Results and Discussion
The population size and the maximum number 

of iterations for the developed mAOA algorthm were 
respectively chosen to be 50 and 1000 in order to per-
form a fair comparison with particle swarm optimiza-
tion (PSO), genetic algorithm (GA), simulated annealing 
(SA) algorithm, gravitational search algorithm (GSA) and 

Table 1. Adopted benchmark functions for performance evaluation

Name Function equation n Range Fmin

Sphere F x xii

n
1

2
1
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Table 2. Initial parameter values of compared algorithms

Algorithm Parameter Value

SA [24]
Initial temperature 0.10
Cooling factor 0.98
Mutation rate 0.50

GA [26]
Selection Roulette wheel
Crossover rate 0.80
Mutation rate 0.40

PSO [27]

Cognitive coefficient 2
Social coefficient 2
Inertia constant Linearly decrease from 

0.80 to 0.20

GSA [25]
Gravitational constant 100
Decreasing coefficient 20

AOA [23]
Sensitive parameter 5
Control parameter 0.499

π

π

arithmetic optimization algorithm (AOA). The obtained 
statistical results (mean, standard deviation (StDev), best 
and rank) from the employed benchmark functions are 
listed in Table 3. Compared with other algorithms, the 
overall best results can easily be seen to be achieved via 
the developed mAOA algorithm. The respective results 
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are a good demonstration of better balance between the 
diversification and the intensification phases of the mAOA 
algorithm.

PSS DESIGN FOR SMIB SYSTEM

Power System Model
Figure 2 shows the power system considered for this 

study. The respective power system consists of a single-
machine infinite-bus through a double circuit transmission 
line. The related machine was assumed to be equipped with 

a fast exciter. To improve the small oscillations, a PSS was 
integrated with this system. The 4th order model of the con-
sidered power system can be given as follows [28]:

= −( )0 1 (8)

= − − −[ ( )]/P P D Mm e 1 (9)

′ = − ′ − − ′ ′E E E x x i Tq fd q d d d d

.
[ ( ) ]/ 0 	 (10)

Table 3. The obtained comparative results for unimodal and multimodal functions

Functions Metric SA GA PSO GSA AOA mAOA (proposed)

F1(x)

Mean 1.97E−13 1.05E−02 1.43E−04 2.06E−17 2.09E−83 0
StDev 6.47E−14 5.12E−03 1.12E−04 6.57E−18 6.62E−83 0
Best 6.88E−14 4.23E−03 9.38E−06 9.83E−18 0 0
Rank 4 6 5 3 2 1

F2(x)

Mean 1.07E+03 9.67E+01 1.33E+02 2.83E+01 2.77E+01 4.90E+00
StDev 2.04E+03 1.28E+02 1.26E+02 1.14E+01 6.86E−01 2.06E+00
Best 2.45E+01 9.52E+00 2.49E+01 2.61E+01 2.61E+01 3.18E+00
Rank 6 4 5 3 2 1

F3(x)

Mean 5.72E−01 0 1.29E−01 0 2.37E+00 0
StDev 7.53E−01 0 3.38E−01 0 3.18E−01 0
Best 0 0 0 0 1.96E+00 0
Rank 5 1 4 1 6 1

F4(x)

Mean 1.22E−01 5.12E−02 6.58E−02 2.11E−02 1.31E−05 1.24E−05
StDev 3.85E−02 2.31E−02 1.92E−02 8.27E−03 1.95E−05 1.16E−05
Best 5.74E−02 1.37E−02 2.94E−02 7.36E−03 1.47E−06 1.10E−06
Rank 6 4 5 3 2 1

F5(x)

Mean −9.34E+03 −6.84E+03 −5.23E+03 −2.71E+03 −6.26E+03 −9.76E+03
StDev 3.78E+02 6.29E+02 5.04E+02 3.45E+02 5.26E+02 4.58E+02
Best −9.97E+03 −8.16E+03 −6.60E+03 −3.52E+03 −7.11E+03 −1.09E+04
Rank 2 3 5 6 4 1

F6(x)

Mean 5.42E+01 1.26E+01 2.94E+01 1.51E+01 0 0
StDev 1.35E+01 3.88E+00 7.09E+00 4.42E+00 0 0
Best 2.66E+01 4.57E+00 1.76E+01 7.94E+00 0 0
Rank 6 3 5 4 1 1

F7(x)

Mean 3.46E−01 2.17E−02 7.39E−03 3.72E−09 8.88E−16 8.88E−16
StDev 4.55E−01 4.38E−03 2.54E−03 3.85E−10 0 0
Best 1.68E−07 1.23E−02 6.75E−04 2.98E−09 8.88E−16 8.88E−16
Rank 6 5 4 3 1 1

F8(x)

Mean 1.28E−02 1.82E−02 2.29E−02 4.46E+00 7.81E−02 6.64E−13
StDev 8.25E−03 1.10E−02 2.82E−02 2.13E+00 3.95E−02 1.60E−12
Best 4.53E−06 5.91E−03 7.35E−05 1.92E+00 9.79E−04 4.66E−15
Rank 2 3 4 6 5 1

Average rank 4.6250 3.6250 4.6250 3.6250 2.8750 1
Overall rank 5 3 5 3 2 1

δ
.

ωω

ωω.
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E K V V U E Tfd A ref T PSS fd A= − + −[ ( ) ]/ 	 (11)

P E i x x i ie q q q d d q= ′ + − ′( ) (12)

where ω0, δ and ω are the synchronous speed, rotor angle 
and rotor speed, respectively. Pm represent mechanical 
power input whereas Pe is electrical power output. The 
inertia constant and damping coefficient are denoted 
by M and D, respectively. E'q  and Efd are internal volt-
age behind x'd and excitation system voltage, respec-
tively, whereas T'd0 is the d-axis open-circuit transient 
time constant. KA denotes the constant of gain whilst TA 
is of the time for the excitation circuit. id is the stator 
current in d-axis whereas iq is of the q-axis circuits. xd 
and xq represent d-axis reactance and q-axis synchro-
nous reactance, respectively, and x'd denotes the d-axis 
transient reactance. VT, Vref and UPSS represent the ter-
minal voltage, reference voltage and PSS output signal, 
respectively.

The linearized model of the considered power system is 
obtained as follows where K1 to K6 are the well-established 
constants showing the interaction amongst the variables in 
power system [28].

∆ ∆= 0 (13)

∆ ∆ ∆ ∆= − − ′
K
M

D
M

K
M

Eq
1 2 	 (14)

∆ ∆ ∆ ∆ ′ =
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−
′

′ +
′

E
K
T K T

E
T

Eq
d d

q
d

fd
4

0 3 0 0

1 1
	 (15)

∆ ∆ ∆ ∆ ∆ ′ = − − ′ − +E
K K
T

K K
T

E
T

E
K
T

Ufd
A

A

A
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The following equations can be used to arrange the state 
space form of the system given in (13) - (16):

x t Ax t Bu t( ) ( ) ( )= + (17)

where:
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The machine, transformer and transmission along with 
the exciter and PSS data of the analyzed single-machine 
infinite-bus system are listed in Table 4.

Structure of PSS
Operating an auxiliary stabilizing signal through 

the excitation system is the main function of a PSS as it 
is used to damp out the generator rotor oscillations [28]. 
The structure of a widely used conventional lead-lag PSS 
is given in (21).
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This structure consists of a stabilizer gain KPSS, a wash-
out filter with a time constant TW, two lead-lag blocks for 
phase compensation with time constants T1, T2, T3 and T4 
and a limiter as shown in Figure 3. UPSS is the output voltage 
of the PSS which is added to the generator exciter input. 
The generator speed deviation ∆ω is typically used as the 
PSS input signal. In this study, washout time constant TW 
was chosen to be 5s.

mAOA Algorithm based PSS Design
In this study, the performance index known as the 

integral of time multiplied absolute error (ITAE), given in 
(22), was used as an objective function since it is feasible to 
choose the parameters of the PSS for minimization of the 
respective function.

ITAE t t dt
tsim

= ⋅ ⋅∫
0

| ( ) |∆ (22)
Figure 2. Single-machine infinite-bus system with PSS.
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In the definition of ITAE, ∆ω(t) stands for the rotor 
speed deviation following a large disturbance whereas tsim 
is the simulation time. The advantage of this performance 
index is the requirement of minimal dynamic plant infor-
mation. The related optimization problem can be mini-
mized with the criteria of 0.01 ≤ KPSS ≤ 100 and 0.01 ≤ Ti ≤ 1 
where i = 1,2,3,4. The implementation of the mAOA algo-
rithm to PSS design for single-machine infinite-bus system 
is illustrated in Figure 4.

The stability of the respective system is increased after 
performing the optimization procedure detailed in Figure 
4. The population and the maximum iteration number
(stopping criteria) were respectively set to 50 and 30 in
the optimization procedure depicted in Figure. MATLAB/
Simulink environment was used to calculate the ITAE
objective function via integrating the mAOA algorithm
with single-machine infinite-bus power system. The mAOA 
algorithm was run for 25 times and the corresponding min-
imum ITAE function value was found with the PSS param-
eters of KPSS = 42.9745, T1 = 0.08039, T2 = 0.01023, T3 =
0.07818 and T4 = 0.01015. The average execution time was
found to be 51.39 s per run. Besides, Figure 5 has been plot-
ted to demonstrate how the adopted ITAE objective func-
tion is minimized with respect to number of iterations.

Simulation Results
The competitiveness of the constructed mAOA algo-

rithm in designing PSS was assessed by comparing it with 
the most recently published study through eigenvalue anal-
ysis and nonlinear time domain simulation. The Simulink 
model used for the simulations can be found in Ref [1]. The 
most convenient approaches chosen for comparisons were 
symbiotic organisms search algorithm based PSS (SOS-
PSS) [1] and sine cosine algorithm based PSS (SCA-PSS) 
[1] damping controllers since those approaches adopted

the same limits of the PSS and power system parameters. 
The optimized PSS parameters were obtained by utilizing 
the mAOA and the compared algorithms are presented in 
Table 5.

Eigenvalue Analysis
Eigenvalue analysis is used to investigate the small signal 

stability behavior of a power system by considering differ-
ent characteristic frequencies. In a power system, the stabil-
ity of eigenvalues (to be in the left side of the s−plane) is not 
the only criteria for stability. The desired eigenvalues must 
also be damped as quickly as possible for electromechanical 
oscillations. The eigenvalue analysis was performed, from 
this point of view, to verify that the constructed mAOA 
algorithm-based controller improves the linear model sta-
bility of the system.

The system eigenvalues (λ = σ ± jω) and damping ratios 
(ξ) of the electromechanical modes related to the systems 
without using the stabilizer and with optimized PSS con-
troller parameters using mAOA, SCA and SOS algorithms 
are given in Table 6.

As can be seen from the table, the system is insuffi-
ciently damped in case of no PSS (ξ = 0.0115). In addition, 
compared to the SOS-PSS [1] and SCA-PSS [1] controllers, 
the electromechanical modes of the proposed mAOA-PSS 
are further to the left of the s-plane (damping factor σ = 
–2.6040) along with a greater damping ratio (ξ = 54.36%).
Therefore, mAOA algorithm-based PSS greatly enhances
the small signal stability of the single-machine infinite-bus
power system and improves the damping characteristics of
electromechanical modes.

Nonlinear Time Domain Simulation
At the generator terminal busbar, a three-phase fault 

was applied at t = 2 s and then cleared after 6-cycle (0.10s). 
The original system has been restored after the clearance of 
the fault. The response of the system in terms of rotor angle 
(δ), speed deviation (∆ω), electrical power (Pe) and termi-
nal voltage (VT) are shown in Figures 6, 7, 8 and 9, respec-
tively. It is obvious from these figures that the power system 
oscillations are inadequately damped although the system 
is stable without any controller. The stability of the single-
machine infinite-bus system was maintained, and the oscil-
lations of the power system were effectively suppressed with 

Table 4. Parameters of the test system [1]

Machine
M H pu x pu x pu x pu T s

ra
d q d d= = = = ′ = ′ =

= ×
2 6 4 2 5 2 1 0 39 9 6
2 60

0

0

. , . , . , . , . ,
dd s P pu De/ , . , , .0 00 5 0 42 4= = = °

Transmission line and transformer X X pu X puL L T1 2 0 8 0 1= = =. , .

Exciter and PSS K T s E pu E pu U pu UA A fd fd PSS PSS= = = − = = −400 0 2 5 5 0 2, . , , , . ,min max max maax .= 0 2 pu

Figure 3. Block diagram of two-stage lead-lag PSS.
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Figure 4. Detailed flowchart of the developed mAOA algorithm-based PSS design.



Sigma J Eng Nat Sci, Vol. 40, No. 3, pp. 529–541, September, 2022 539

Figure 5. Change of ITAE function with respect to 
iterations.

Table 5. Optimized PSS parameters using different algo-
rithms

PSS type KPSS T1 T2 T3 T4

SOS-PSS [1] 16.1361 0.1888 0.0211 0.7916 0.5550
SCA-PSS [1] 46.8866 0.09288 0.0100 0.1238 0.0100
mAOA-PSS 
(proposed)

42.9745 0.08039 0.01023 0.07818 0.01015

applications of SOS-PSS [1] and SCA-PSS [1]. In addition, 
unlike SOS-PSS and SCA-PSS controllers, the oscillations 
in the rotor angle, speed and electrical power were pre-
vented with the employment of the proposed mAOA-PSS 
controller. Moreover, it provided good damping character-
istics to low-frequency oscillations by quickly stabilizing 
the system.

CONCLUSION

In this work, a modified arithmetic optimization algo-
rithm has been developed by combining the original version 
of the arithmetic optimization algorithm with the simu-
lated annealing technique in order to achieve a novel and 
enhanced metaheuristic algorithm. The search capability of 
the arithmetic optimization algorithm has been improved 

Table 6. Eigenvalues and damping ratios of the electrome-
chanical modes

PSS type Dominant eigenvalue Damping 
ratio

No stabilizer –0.0803 ± j6.9824 1.15%
SOS-PSS [1] –1.7449 ± j4.6057 35.43%
SCA-PSS [1] –2.0165 ± j3.6201 48.66%
mAOA-PSS (proposed) –2.6040 ± j4.0211 54.36%

Figure 6. Change of δ rotor angle.

Figure 7. Change of ∆ω speed deviation.

Figure 8. Change of Pe electrical power.

Figure 9. Change of VT terminal voltage.
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via inserting simulated annealing algorithm with an appro-
priate mechanism. Test functions with unimodal and multi-
modal features along with a real-world engineering problem 
have been employed to assess the capability of the developed 
mAOA algorithm and observe its promise. The evaluation 
process has been started by testing the proposed approach 
against the benchmark functions of Step, Sphere, Rastrigin, 
Rosenbrock, Quartic, Griewank, Schwefel, and Ackley. The 
obtained results have been compared with the original arith-
metic optimization algorithm, simulated annealing algo-
rithm, genetic algorithm, particle swarm optimization and 
gravitational search algorithm. The statistical performance 
of the proposed algorithm has demonstrated the highly 
competitive capability of the mAOA algorithm in terms 
of achieving the best, mean and standard deviation values. 
Further assessment of the proposed mAOA algorithm has 
been performed by testing it for complex systems through 
designing a PSS employed in a single-machine infinite-bus 
power system. The achieved system capability has been 
compared with sine-cosine and symbiotic organisms search 
algorithms-based PSS damping controllers since those 
approaches adopted the same power system parameters and 
the limits of the PSS parameters. The transient stability of 
the considered power system has greatly been enhanced and 
the damping characteristics of electromechanical modes 
has been improved via utilization of the proposed mAOA 
based PSS which confirmed its superior performance. To 
sum up, the implementation of the proposed hybrid mAOA 
algorithm to unimodal and multimodal test functions and 
one of the complex real-world engineering problems dem-
onstrated that the mAOA algorithm is a powerful approach 
for optimization problems and a promising tool for complex 
real-world engineering problems.
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