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ABSTRACT

In this study, Wong-Zakai approximation method has been used to obtain approximate solu-
tions for two compartmental models of smoking dynamics. Stratonovich stochastic differ-
ential equation systems are obtained for these two stochastic models for the application of 
Wong-Zakai method. Wong-Zakai method is used together with the predictor-corrector de-
terministic approximation method where Adams-Bashforth method is used as the predictor 
pair and Adams-Moulton method is used as the corrector pair. Stochastic Runge-Kutta IV, 
Euler-Maruyama and stochastic Runge-Kutta strong order 1.0 schemes are also used to inves-
tigate the models and the results are compared to the results from Wong-Zakai approximation. 
The comparison shows that Wong-Zakai method is a reliable tool for the analysis of stochastic 
models and can be considered as an alternative investigation method for modeling studies. 
Solution graphs, error graphs and numerical results have been given as evidence to show that 
Wong-Zakai method can also be a reliable method for analyzing various models. An alternate 
technique for parallelizing the algorithm has also been given to decrease CPU times for Wong-
Zakai method. This technique is suggested to overcome the extra calculation load that comes 
with Wong-Zakai method.

Cite this article as: Şengül S, Bekiryazıcı Z, Merdan M. Wong-Zakai approximation for sto-
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INTRODUCTION 

Mathematical modeling studies concentrate on an 
accurate description of real life events through the use of 
mathematical equations. Models are used in a wide range 
of applications from metastasis evolution to voter modeling 
[14, 16]. However, in literature, it is seen that most of the 
mathematical modeling studies contain deterministic anal-
yses, meaning that the random nature of the event under 
consideration is neglected. Deterministic events produce 

the same results for every trial under the same conditions 
but it is known that some events in nature do not show 
deterministic behavior. These types of events, random 
events in particular, should not be modeled with determin-
istic equation systems if they are to be described accurately. 
The use of random and stochastic equation systems is more 
appropriate in such cases.

Smoking models in literature are often comprised of 
compartmental models. The SIR (susceptible-infected-re-
covered) model and its versions form the basis for many 
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mathematical models just like the smoking models. Most 
of these smoking models are formed of deterministic com-
partmental models analyzing certain aspects of the trans-
mission of this habit. Some of the recent studies include 
models with relapse classes [22], models for analyzing the 
effect of electronic cigarettes on smoking cessation [6], giv-
ing up smoking models with harmonic type incidence rate 
[13] and models on smoking dynamics with health educa-
tion effect [20]. There are also many recent studies on the 
fractional modeling of smoking dynamics such as the anal-
ysis of a model with modified homotopy analysis transform 
method [18], a model with Atangana-Baleanu derivative 
[17], a fractional model with local and nonlocal kernel [10] 
and the analysis of a model with Laplace Adomian decom-
position method [5]. It is seen that there are not so many 
random modeling studies for smoking models, with a study 
by Lahrouz et al. being the only prominent example for this 
case [8]. Although there are some stochastic studies, it is 
known that most of the recent works in the literature are 
concentrated on fractional calculus [24-35].

In this study, Wong-Zakai approximation will be used 
for analyzing mathematical models of smoking consisting 
of stochastic differential equations. Wong-Zakai method is 
based on Stratonovich stochastic integration which preserves 
some of the properties of deterministic integration. Most of 
the stochastic studies in literature use the popular stochastic 
approximation methods Euler-Maruyama and Runge-Kutta 
[7, 9, 11]. Hence, we propose this method as a new alterna-
tive for the analysis of smoking models. Wong-Zakai method 
has been recently used for the analysis of stochastic Landau-
Lifschitz-Gilbert equations [2], stochastic reaction-diffusion 
equations [23], random Navier-Stokes equations [3] and sto-
chastic heat equation [4]. The next section contains the basic 
formulas for the methods used for the analysis. The mod-
els and results for the models are given in sections 3 and 4. 
Finally the conclusion is given for the study.

MATERIALS AND METHODS

Wong-Zakai Approximation	
Wong-Zakai method is based on obtaining determinis-

tic approximations for each discretized time subinterval. A 
deterministic approximation method is used together with 
Wong-Zakai method to obtain the approximate solution of 
a stochastic differential equation (SDE).

	 	 (1)

on the time interval [𝑡0, 𝑇] with the initial condition 𝑋𝑡0 
= 𝑋0. The corresponding Stratonovich SDE can be given as:

	 	 (2)

where the modified drift coefficient 𝑎(𝑡, 𝑋𝑡)𝑑𝑡 can be 
obtained as [7]:

	 	 (3)

The Ito SDE (1) is transformed into the Stratonovich SDE 
(2) to implement Wong-Zakai method. Let the interval [𝑡0, 
𝑇] be divided into 𝑘 subintervals such as 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑘−1 
< 𝑡𝑘 = 𝑇. Using this discretization, an ordinary differential 
equation is examined for each interval [𝑡𝑗, 𝑡𝑗+1] for 𝑗 =  0,1, 
… , 𝑘 − 1. Here, the approximations 𝑋𝑡𝑗+1 are obtained from 

	 	 (4)

where 𝑋̂𝑡𝑛 
= 𝑋̂𝑗, 𝑗 =  0,1, … , 𝑘 − 1 and ∆𝑊𝑛 = 𝑊𝑡𝑗+1 

− 𝑊𝑡𝑗 is the approximation for 𝑑𝑊𝑡. The ordinary differen-
tial equations will be solved by predictor corrector method 
with Adams-Bashford method as the predictor method

	 	 (5)

and Adams-Moulton method is used as the corrector 
method [12]:

	 	 (6)

where m is the number of subintervals and h is the step 
size.

Smoking Models
Two compartmental models will be used as numerical 

examples. First example is a stochastic model with three 
compartments, whereas the second model is a determinis-
tic model containing three compartments with additional 
stochastic noise.

The stochastic model of smoking
The stochastic differential equation system is given as [8]:

	 	
(7)

where 𝐵𝑖, 𝑖 =  1, 2, 3 are independent Brownian motions 
and 𝜎𝑖, 𝑖 =  1, 2, 3 are constants. Here, 

and  with  Here, 𝑃 
denotes the fraction of the potential smokers who have a 
possibility of becoming smokers in the future, 𝑆 denotes the 
fraction of smokers and 𝑄𝑇 denotes the fraction of smokers 
who temporarily quit smoking. Also, 𝜇 denotes the average 
duration of smoking activity (1/𝜇), 𝛾 denotes the rate of 
quitting smoking, 𝛼 denotes the rate at which temporary 
quitters revert back to smoking, 𝜎 denotes the fraction of 
smokers who permanently quit smoking and 𝛽 denotes 
contact rate [15].

The Stratonovich form of problem is given as

	 	
(8)
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The values for the parameters are obtained from litera-
ture [1] as: 𝜇 = 0.04, 𝛾 = 0.3, 𝛼 = 0.25, 𝜎 = 0.4, 𝛽 = 0.5. 
The diffuson coefficients are assumed as: 𝜎1 = 𝜎2 = 𝜎3 = 
0.5, whereas the initial conditions are: 𝑃(0) =  0.634, 𝑆(0) 
= 0.288, 𝑄T(0) = 0.048. 𝑡 denotes the number of months.

Theorem 1. Let 𝑚𝑖(𝑋, 𝑡), 𝑖 = 1,2,3 for 𝑋 ∈ {𝑃, 𝑆, 𝑄T} be 
the drift coefficients of the stochastic differential equation 
system (7) and 𝜎𝑖

∗(𝑋, 𝑡), 𝑖 = 1,2,3 be the diffusion coeffi-
cients of the system (7), satisfying the following conditions

𝐻1: 𝜎𝑖
∗′ (𝑋, 𝑡) =   is continuous in both 𝑋 ∈ {𝑃, 

𝑆, 𝑄T} and 𝑡.
𝐻2: 𝑓(𝑋, 𝑡) is continuous in 𝑡.
𝐻3: |𝑓(𝑋, 𝑡) −  𝑓(𝑋0, 𝑡)| ≤ 𝐾|𝑋 −  𝑋0|
where 𝑓(𝑋, 𝑡) stands for any of the quantities 

𝜎𝑖
∗(𝑋, 𝑡), 𝜎𝑖

∗′(𝑋, 𝑡)𝜎𝑖
∗(𝑋, 𝑡) and 𝑚𝑖(𝑋, 𝑡), and 𝐾 is a con-

stant independent of 𝑡, 𝑋 and 𝑋0.
Furthermore, assume that the initial conditions 𝑃(0), 

𝑆(0), 𝑄T(0) satisfy 𝐸[𝑋4] < ∞. Then the sequence of solu-
tions 𝑋t

(𝑛) converges in mean to 𝑋t as 𝑛 → ∞, where 𝑋t is the 
unique solution of the stochastic differential equation

	
[19].

The mathematical model of smoking with determination 
and education

The second mathematical model is a deterministic 
model for analyzing smoking dynamics with determination 
and education [21]. The system is added stochastic noise to 
obtain a stochastic model which can be given as:

	 	
(9)

 where 𝐵𝑖, 𝑖 =  1, 2, 3 are independent Brownian motions 
and 𝜎𝑖 = 0.3, 𝑖 = 4̅̅,̅9̅  are constants. Here, 𝑃(𝑡) denotes 
the fraction of potential smokers, 𝑆(𝑡) denotes the frac-
tion of smokers and 𝑄(𝑡) denotes the fraction of quitters. 
The parameters used in this model are given as follows: 𝜇 
denotes the inflow rate of individuals into compartment 𝑃 
and the natural death rate in each compartment, 𝛽 denotes 
the rate of transmission of smoking habit, 𝛼 denotes the 
quitting rate from smoking, 𝜖 denotes the measure of deter-
mination and 𝛿 denotes the rate of individuals in compart-
ment 𝑃 moving to compartment 𝑄 due to education.

The Stratonovich form of problem is given as

	 	
(10)

Parameters are used with the following values (obtained 
from the referred study [21]: 𝜇 = 0.02, 𝜖 = 0.2, 𝛼 = 0.05, 

𝜎 =  0.4, 𝛽 = 0.4, 𝛿 = 0.06. Initial conditions are given as 
𝑃(0) =  0.6, 𝑆(0) = 0.3, 𝑄(0) =  0.1. It should be noted 
that the diffusion coefficients are assumed to be 𝜎𝑖 = 0.3, 
𝑖 =    4̅̅,̅9̅ .

Similar to Theorem 1, the numerical solution of (10) is 
convergent to the unique solution of the stochastic differen-
tial equation system.

RESULTS

Wong-Zakai method is compared with the other sto-
chastic methods Euler-Maruyama, Runge-Kutta 1-0 strong 
order and stochastic Runge-Kutta IV methods as follows

Results for the Stochastic Model (8)
The stochastic results for model (8) are given for the 

parameters in the figures below (Figures 1,2,3).

Figure 1. Results for the compartment P(t) in model (8).

Figure 2. Results for the compartment S(t) in model (8).
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The results for all of the methods are given in the table 
below (Table 1).

The relative errors (relative to the solutions of stochas-
tic Runge-Kutta IV) at several points of the process can be 
shown as below (Table 2).

The relative errors throughout the process are shown 
for the compartments below Figures (4,5,6).

The relative errors have been computed in relevance to 
the stochastic Runge-Kutta method of order IV since it is 
the highest ordered method within the scope of the study. 

Table 1. Results from the methods for model (8)

t RK-IV Euler-Maruyama RK-1.0 WZ

E(P(t)) E(S(t)) E(QT(t)) E(P(t)) E(S(t)) E(QT(t)) E(P(t)) E(S(t)) E(QT(t)) E(P(t)) E(S(t)) E(QT(t))
0.0000 0.6340 0.2880 0.0480 0.6340 0.2880 0.0480 0.6340 0.2880 0.0480 0.6340 0.2880 0.0480
1.0000 0.5642 0.2928 0.0813 0.5631 0.2927 0.0815 0.5627 0.2923 0.0813 0.5644 0.2926 0.0813
2.0000 0.5048 0.2955 0.1068 0.5023 0.2954 0.1072 0.5013 0.2945 0.1067 0.5043 0.2952 0.1068
3.0000 0.4531 0.2959 0.1262 0.4522 0.2952 0.1265 0.4513 0.2943 0.1259 0.4543 0.2956 0.1261
4.0000 0.4111 0.2939 0.1405 0.4103 0.2933 0.1407 0.4099 0.2913 0.1399 0.4122 0.2934 0.1404
5.0000 0.3775 0.2893 0.1507 0.3760 0.2885 0.1508 0.3764 0.2871 0.1499 0.3785 0.2888 0.1505
6.0000 0.3502 0.2839 0.1575 0.3491 0.2816 0.1574 0.3499 0.2805 0.1566 0.3509 0.2826 0.1573
7.0000 0.3292 0.2757 0.1616 0.3285 0.2738 0.1612 0.3293 0.2729 0.1603 0.3298 0.2750 0.1613
8.0000 0.3129 0.2674 0.1633 0.3125 0.2655 0.1627 0.3133 0.2648 0.1619 0.3135 0.2669 0.1630
9.0000 0.3006 0.2584 0.1632 0.3003 0.2570 0.1625 0.3012 0.2566 0.1618 0.3011 0.2581 0.1630
10.0000 0.2916 0.2501 0.1618 0.2914 0.2486 0.1611 0.2922 0.2482 0.1604 0.2919 0.2494 0.1617
11.0000 0.2850 0.2416 0.1594 0.2849 0.2404 0.1588 0.2858 0.2399 0.1582 0.2854 0.2409 0.1591
12.0000 0.2805 0.2336 0.1562 0.2805 0.2325 0.1557 0.2814 0.2318 0.1552 0.2809 0.2329 0.1561
13.0000 0.2777 0.2255 0.1526 0.2778 0.2249 0.1522 0.2786 0.2243 0.1517 0.2781 0.2254 0.1526
14.0000 0.2763 0.2181 0.1488 0.2763 0.2177 0.1484 0.2772 0.2170 0.1480 0.2768 0.2183 0.1489
15.0000 0.2761 0.2112 0.1448 0.2761 0.2105 0.1445 0.2768 0.2100 0.1441 0.2764 0.2112 0.1449
16.0000 0.2766 0.2047 0.1409 0.2768 0.2040 0.1405 0.2774 0.2036 0.1402 0.2769 0.2046 0.1408
17.0000 0.2780 0.1986 0.1369 0.2782 0.1978 0.1365 0.2787 0.1975 0.1361 0.2782 0.1984 0.1368
18.0000 0.2798 0.1927 0.1330 0.2801 0.1921 0.1325 0.2806 0.1918 0.1323 0.2800 0.1926 0.1329
19.0000 0.2823 0.1873 0.1292 0.2824 0.1867 0.1288 0.2829 0.1865 0.1285 0.2823 0.1872 0.1290
20.0000 0.2849 0.1823 0.1255 0.2851 0.1818 0.1252 0.2855 0.1816 0.1249 0.2850 0.1822 0.1253
21.0000 0.2879 0.1776 0.1220 0.2882 0.1771 0.1217 0.2886 0.1769 0.1214 0.2880 0.1775 0.1219
22.0000 0.2911 0.1733 0.1187 0.2913 0.1728 0.1183 0.2918 0.1726 0.1181 0.2913 0.1731 0.1186
23.0000 0.2945 0.1693 0.1156 0.2947 0.1688 0.1152 0.2952 0.1686 0.1150 0.2947 0.1691 0.1154
24.0000 0.2979 0.1655 0.1126 0.2982 0.1651 0.1123 0.2986 0.1649 0.1121 0.2982 0.1654 0.1125
25.0000 0.3015 0.1620 0.1098 0.3018 0.1616 0.1095 0.3023 0.1615 0.1094 0.3018 0.1619 0.1097
26.0000 0.3051 0.1588 0.1072 0.3055 0.1585 0.1069 0.3059 0.1584 0.1068 0.3055 0.1588 0.1071
27.0000 0.3088 0.1559 0.1048 0.3092 0.1556 0.1045 0.3095 0.1555 0.1044 0.3091 0.1558 0.1047
28.0000 0.3125 0.1532 0.1026 0.3129 0.1529 0.1023 0.3132 0.1529 0.1022 0.3127 0.1531 0.1025
29.0000 0.3161 0.1507 0.1005 0.3165 0.1504 0.1002 0.3168 0.1504 0.1002 0.3164 0.1507 0.1004
30.0000 0.3197 0.1484 0.0985 0.3201 0.1482 0.0983 0.3203 0.1482 0.0983 0.3199 0.1484 0.0985
31.0000 0.3232 0.1464 0.0968 0.3236 0.1461 0.0965 0.3238 0.1462 0.0965 0.3235 0.1464 0.0967
32.0000 0.3267 0.1445 0.0951 0.3271 0.1443 0.0949 0.3272 0.1443 0.0949 0.3269 0.1445 0.0951
33.0000 0.3300 0.1428 0.0936 0.3303 0.1426 0.0934 0.3305 0.1426 0.0934 0.3302 0.1428 0.0936
34.0000 0.3333 0.1412 0.0922 0.3335 0.1410 0.0921 0.3337 0.1411 0.0920 0.3334 0.1412 0.0922
35.0000 0.3363 0.1398 0.0910 0.3367 0.1396 0.0908 0.3368 0.1397 0.0908 0.3365 0.1399 0.0909
40.0000 0.3501 0.1348 0.0862 0.3504 0.1348 0.0861 0.3504 0.1349 0.0861 0.3501 0.1349 0.0862
45.0000 0.3602 0.1324 0.0835 0.3605 0.1325 0.0834 0.3607 0.1324 0.0835 0.3604 0.1325 0.0835
50.0000 0.3674 0.1317 0.0823 0.3676 0.1317 0.0823 0.3674 0.1317 0.0822 0.3673 0.1317 0.0822
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Figure 4. Relative errors of Wong-Zakai, Runge Kutta 1.0 
and Euler Maruyama for P.

Figure 5. Relative errors of Wong-Zakai, Runge Kutta 1.0 
and Euler Maruyama for S.

Figure 3. Results for the compartment QT(t) in model (8).

Table 2. Relative errors at selected points within the interval for model (8)

t Relative Error (Euler-Mar.) Relative Error (RK 1.0) Relative Error (Wong-Zakai)

er(P) er(S) er(QT) er(P) er(S) er(QT) er(P) er(S) er(QT)
10.00 0.0007 0.0060 0.0043 0.0021 0.0076 0.0087 0.0010 0.0028 0.0006
20.00 0.0007 0.0027 0.0024 0.0021 0.0038 0.0048 0.0004 0.0005 0.0016
30.00 0.0013 0.0013 0.0020 0.0019 0.0013 0.0020 0.0006 0.0000 0.0000
40.00 0.0009 0.0000 0.0012 0.0009 0.0007 0.0012 0.0000 0.0007 0.0000
45.00 0.0008 0.0008 0.0012 0.0014 0.0000 0.0000 0.0006 0.0008 0.0000
50.00 0.0005 0.0000 0.0000 0.0000 0.0000 0.0012 0.0003 0.0008 0.0012

Figure 6. Relative errors of Wong-Zakai, Runge Kutta 1.0 
and Euler Maruyama for QT.
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The relative error plots (Figures 4-6), error comparisons 
(Table 2) and the results (Table 1) show that Wong-Zakai 
method performs similarly compared to the other stochas-
tic methods. For instance, at 𝑡 = 3  0, Wong-Zakai method 
produces the relative errors 0.0006, 0.0000 and 0.0000 for 
the compartments 𝑃, 𝑆 and 𝑄𝑇 respectively whereas the rel-
ative errors for Euler-Maruyama and Runge-Kutta strong 
order 1.0 are found as 0.0013, 0.0013, 0.0020 and 0.0019, 
0.0013, 0.0020, respectively. Although Wong-Zakai 
method gives the best results at this point in comparison 
to stochastic Runge-Kutta IV, it can be seen that it is also 
outperformed by the other methods in several points of the 
time interval. Hence, an overall interpretation can be made 
that the methods perform similarly for model (8).

Results for the Stochastic Model (10)
The stochastic results for model (10) are given for the 

parameters in the figures below (Figures 7,8,9).

The relative errors throughout the process are shown 
for the compartments below (Figures 10,11,12)

The relative errors (relative to the solutions of stochas-
tic Runge-Kutta IV) at several points of the process can be 
shown as below (Table 4):

It should be noted that the diffusion coefficients for 
model (8) have been used as 𝜎𝑖 = 0.5, 𝑖 =    ̅1̅,̅3̅  whereas 𝜎𝑖 = 
0.3, 𝑖 =    ̅4̅,̅9̅  have been used for model (10). This is due to the 
fact that the methods Euler-Maruyama and Runge-Kutta 
produced instable results with 𝜎𝑖 = 0.5, 𝑖 =    ̅4̅,̅9̅  in the simu-
lations for model (10). However, no instability in the results 
was seen with 𝜎𝑖 = 0.5, 𝑖 =   4̅̅,̅9̅  for Wong-Zakai method. 
This is seen as an advantage for Wong-Zakai, showing that 
it gives more stable results numerically.

The relative error plots (Figures 10-12), error compar-
isons (Table 4) and the results (Table 3) show that Wong-
Zakai method performs similarly compared to the other 

Figure 9. Results for the compartment Q(t) in model (10).

Figure 8. Results for the compartment S(t) in model (10).
Figure 10. Relative errors of Wong-Zakai, Runge Kutta 1.0 
and Euler Maruyama for P.

Figure 7. Results for the compartment P(t) in model (10).
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stochastic methods for the model (10) too. At 𝑡 = 3  0, Wong-
Zakai method gives the relative errors 0.0026, 0.0019 
and 0.0035 for the compartments 𝑃, 𝑆 and 𝑄 respec-
tively; whereas the relative errors for Euler-Maruyama 
and Runge-Kutta strong order 1.0 are found as 0.0065, 
0.0043, 0.0056 and 0.0052, 0.0064, 0.0110, respectively. 
Although Wong-Zakai method gives the best results at this 
point in comparison to stochastic Runge-Kutta IV, it can be 
seen that it is also outperformed by the other methods in 
several points of the time interval. Hence, an overall inter-
pretation can be made that the methods perform similarly 
for model (10) too.

It is seen that for model (8), the fraction of potential 
smokers decreases to about 27.6% around 𝑡 =  15 reaching 
its minimum value, after which it starts increasing. The 
fraction of smokers increases in the beginning reaching its 
maximum point about 29.5% around 𝑡 =  3 and then starts 
decreasing. The fraction of quitters increases in the begin-
ning, obtaining the maximal value about 16.3% around 𝑡 
= 8 and then starts decreasing. For model (10) the frac-
tion of potential smokers decreases in the beginning and 
reaches its minimum about 14.8% around 𝑡 =  21 and 
then starts increasing. The fraction of smokers increases 
to about 52.5% around 𝑡 =  10 and starts decreasing. The 
fraction of temporary quitters increases throughout the 
process reaching its maximum at 𝑡 =  50 about 50.92%. 
The analysis could be performed on a longer time scale, 
however, [0,50] is the region where the results are most 
nonlinear. After 𝑡 =  50 the results become more stable, 
meaning similar results should be expected for all of the 
methods. Since the main point of the study is the com-
parison of the numerical performance of the methods, we 
have used this time interval where nonlinear solutions are 
seen for the compartments.

DISCUSSION

It is known that an important fraction of the numerical 
studies on stochastic differential models are based on the 
use of the popular stochastic schemes Euler-Maruyama and 
Milstein. Our findings show that once the corresponding 
Stratonovich stochastic differential equations are obtained 
for the stochastic models under consideration, Wong-Zakai 
method gives equally reliable numerical results. Figures 1, 2 
and 3 have been given to show the results for the stochastic 
model (8) using all of these stochastic schemes. The figures 
show that all of the methods provide similar results for the 
model. Table 1 contains the numerical results for model (8) 
and Table 2 contains errors relative to Runge-Kutta scheme. 
Figures 4, 5 and 6 show these relative errors and using the 
results from the Tables and the Figures, it is once again seen 
that all of the models give similar results. The situation is 
the same for model (10) too. Figures 7, 8 and 9 contain the 
results for the compartments of model (10) obtained with 
all of the stochastic models considered. Relative errors 
shown in Figures 10, 11 and 12, numerical results given in 
Table 3 and relative errors at selected points given in Table 
4 underline the identical performance of the stochastic 
methods for the system (10). Note that Figures 1, 2, 3 and 
7, 8, 9 have matching solution curves for all of the compart-
ments obtained from all of the stochastic schemes. Relative 
error figures 4, 5, 6 and 10, 11, 12 show the distribution of 
errors at various time points. The figures show that all of 
the methods have time points in the focused interval where 
they are better than the others and other time points where 
they are outperformed by the rest of the methods.

Improving the Algorithm Performance
The calculations have been performed on a computer 

with Intel® CoreTM i7-6700HQ @ 2.60GHz 2.59 GHz pro-
cessor and a 16 GB RAM in a 64-bit OS. The same step size 

Figure 12. Relative errors of Wong-Zakai, Runge Kutta 1.0 
and Euler Maruyama for Q.

Figure 11. Relative errors of Wong-Zakai, Runge Kutta 1.0 
and Euler Maruyama for S.
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Table 4. Relative errors at selected points within the interval for model (10)

t Relative Error (Euler-Mar.) Relative Error (RK 1.0) Relative Error (Wong-Zakai)
er(P) er(S) er(Q) er(P) er(S) er(Q) er(P) er(S) er(Q)

10.00 0.0028 0.0070 0.0071 0.0073 0.0023 0.0084 0.0045 0.0025 0.0192
20.00 0.0047 0.0094 0.0005 0.0047 0.0006 0.0104 0.0094 0.0010 0.0086
30.00 0.0065 0.0043 0.0056 0.0052 0.0064 0.0110 0.0026 0.0019 0.0035
40.00 0.0082 0.0111 0.0006 0.0019 0.0043 0.0087 0.0088 0.0081 0.0032
45.00 0.0018 0.0169 0.0012 0.0006 0.0003 0.0094 0.0062 0.0043 0.0051
50.00 0.0049 0.0161 0.0090 0.0036 0.0027 0.0120 0.0061 0.0021 0.0024

Table 3. Results from the methods for model (10)

t RK-IV Euler-Maruyama RK-1.0 WZ
E(P(t)) E(S(t)) E(Q(t)) E(P(t)) E(S(t)) E(Q(t)) E(P(t)) E(S(t)) E(Q(t)) E(P(t)) E(S(t)) E(Q(t))

0 0.6000 0.3000 0.1000 0.6000 0.3000 0.1000 0.6000 0.3000 0.1000 0.6000 0.3000 0.1000
1.0000 0.5159 0.3496 0.1342 0.5151 0.3486 0.1344 0.5167 0.3483 0.1347 0.5157 0.3488 0.1343
2.0000 0.4419 0.3931 0.1636 0.4405 0.3933 0.1639 0.4430 0.3927 0.1637 0.4415 0.3931 0.1630
3.0000 0.3791 0.4311 0.1886 0.3767 0.4319 0.1892 0.3788 0.4312 0.1888 0.3778 0.4326 0.1886
4.0000 0.3268 0.4616 0.2096 0.3247 0.4635 0.2110 0.3255 0.4620 0.2100 0.3246 0.4640 0.2099
5.0000 0.2837 0.4858 0.2287 0.2820 0.4874 0.2287 0.2843 0.4857 0.2288 0.2822 0.4887 0.2284
6.0000 0.2503 0.5033 0.2449 0.2494 0.5048 0.2454 0.2510 0.5029 0.2442 0.2486 0.5054 0.2442
7.0000 0.2241 0.5144 0.2593 0.2230 0.5157 0.2604 0.2254 0.5147 0.2588 0.2225 0.5163 0.2573
8.0000 0.2034 0.5220 0.2728 0.2036 0.5238 0.2726 0.2052 0.5226 0.2720 0.2036 0.5239 0.2691
9.0000 0.1888 0.5253 0.2857 0.1888 0.5279 0.2843 0.1901 0.5265 0.2838 0.1890 0.5272 0.2804
10.0000 0.1774 0.5254 0.2965 0.1779 0.5291 0.2944 0.1787 0.5266 0.2940 0.1782 0.5267 0.2908
11.0000 0.1689 0.5237 0.3065 0.1693 0.5284 0.3046 0.1705 0.5252 0.3037 0.1706 0.5257 0.3006
12.0000 0.1632 0.5211 0.3154 0.1629 0.5254 0.3134 0.1648 0.5224 0.3127 0.1645 0.5240 0.3103
13.0000 0.1591 0.5169 0.3245 0.1590 0.5218 0.3224 0.1594 0.5191 0.3217 0.1597 0.5202 0.3197
14.0000 0.1567 0.5122 0.3321 0.1556 0.5169 0.3296 0.1561 0.5142 0.3294 0.1559 0.5149 0.3281
15.0000 0.1537 0.5070 0.3399 0.1533 0.5116 0.3371 0.1527 0.5088 0.3375 0.1534 0.5092 0.3360
16.0000 0.1518 0.5016 0.3458 0.1520 0.5059 0.3449 0.1513 0.5035 0.3443 0.1526 0.5038 0.3441
17.0000 0.1505 0.4960 0.3531 0.1504 0.5005 0.3522 0.1506 0.4978 0.3515 0.1512 0.4986 0.3518
18.0000 0.1496 0.4903 0.3602 0.1496 0.4942 0.3595 0.1499 0.4903 0.3581 0.1505 0.4917 0.3585
19.0000 0.1489 0.4848 0.3684 0.1488 0.4888 0.3663 0.1492 0.4837 0.3639 0.1496 0.4842 0.3644
20.0000 0.1487 0.4785 0.3737 0.1494 0.4830 0.3739 0.1494 0.4788 0.3698 0.1501 0.4780 0.3705
21.0000 0.1484 0.4720 0.3792 0.1498 0.4773 0.3791 0.1495 0.4715 0.3764 0.1497 0.4716 0.3766
22.0000 0.1486 0.4652 0.3852 0.1502 0.4714 0.3856 0.1497 0.4653 0.3822 0.1495 0.4659 0.3829
23.0000 0.1498 0.4599 0.3896 0.1502 0.4648 0.3909 0.1504 0.4592 0.3877 0.1492 0.4597 0.3891
24.0000 0.1502 0.4535 0.3944 0.1499 0.4574 0.3972 0.1495 0.4525 0.3930 0.1497 0.4543 0.3948
25.0000 0.1509 0.4478 0.4008 0.1505 0.4519 0.4035 0.1503 0.4467 0.3985 0.1504 0.4490 0.4007
26.0000 0.1514 0.4430 0.4066 0.1517 0.4461 0.4084 0.1505 0.4402 0.4037 0.1508 0.4437 0.4058
27.0000 0.1522 0.4373 0.4129 0.1519 0.4399 0.4138 0.1517 0.4345 0.4085 0.1516 0.4382 0.4112
28.0000 0.1531 0.4319 0.4179 0.1522 0.4345 0.4195 0.1524 0.4295 0.4133 0.1526 0.4323 0.4168
29.0000 0.1530 0.4266 0.4217 0.1526 0.4285 0.4242 0.1530 0.4240 0.4173 0.1527 0.4276 0.4213
30.0000 0.1542 0.4211 0.4276 0.1532 0.4229 0.4300 0.1534 0.4184 0.4229 0.1538 0.4219 0.4261
31.0000 0.1542 0.4151 0.4322 0.1540 0.4172 0.4349 0.1544 0.4130 0.4282 0.1542 0.4168 0.4312
32.0000 0.1539 0.4095 0.4372 0.1550 0.4122 0.4398 0.1547 0.4074 0.4338 0.1552 0.4123 0.4362
33.0000 0.1547 0.4041 0.4419 0.1558 0.4071 0.4452 0.1549 0.4017 0.4387 0.1554 0.4072 0.4407
34.0000 0.1556 0.4000 0.4465 0.1560 0.4026 0.4492 0.1556 0.3972 0.4443 0.1557 0.4021 0.4455
35.0000 0.1561 0.3950 0.4509 0.1566 0.3978 0.4539 0.1561 0.3921 0.4481 0.1562 0.3976 0.4501
40.0000 0.1588 0.3710 0.4732 0.1601 0.3751 0.4735 0.1585 0.3694 0.4691 0.1602 0.3740 0.4717
45.0000 0.1623 0.3484 0.4912 0.1620 0.3543 0.4906 0.1624 0.3485 0.4866 0.1633 0.3499 0.4937
50.0000 0.1646 0.3295 0.5092 0.1654 0.3348 0.5046 0.1652 0.3286 0.5031 0.1656 0.3302 0.5104
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has been used within the methods for a fair comparison. 
Models (8) and (10) have been simulated in MATLAB 
104 times with a time step of Δ𝑡𝑛 = 0.05 within the inter-
val [0,50]. However, Wong-Zakai method requires the 
solution of an ordinary differential equation in each time 
sub-interval [𝑡𝑗, 𝑡𝑗+1] and hence, a new time step size ℎ is 
used within this subinterval for the deterministic method. 
This results in a higher calculation load for Wong-Zakai 
method. The most prominent disadvantage of Wong-Zakai 
method is this calculation load. To tackle this disadvantage, 
we have parallelized the loops for decreasing the calculation 
time. “parfor” command has been used in a computer with 
4 workers to obtain better CPU times, which have been 
shown in the table below (Table 5).

Here, 𝑁1 denotes the number of intervals for the total 
time [0,50], whereas 𝑁2 denotes the number of subinter-
vals used within each [𝑡𝑗, 𝑡𝑗+1] for Wong-Zakai method. 
“parfor” command has resulted in a 2-3 times decrease in 
the total CPU times for the computations. Hence, a signif-
icant amount of decrease has been obtained using the new 
“parfor” command in the algorithm. This result could be 
obtained at a better level if more computers or processors 
are used for the algorithms.

Hence, it is seen that “parfor” command could be cou-
pled with Wong-Zakai method to swiftly obtain accurate 
approximate solutions to mathematical models of smoking 
consisting of stochastic differential equation systems. “par-
for” is an important tool for the algorithm as it enables a 
swift approximate analysis of the stochastic model. This 
algorithm could be generalized to analyze any stochastic 
mathematical model in various research fields such as engi-
neering, biology or medicine.

CONCLUSION 

In this study, Wong-Zakai approximation method has 
been applied to two compartmental stochastic models 
of smoking. Wong-Zakai method relies upon the deter-
ministic properties of Stratonovich stochastic integration 
and the performance of such an approximation method 
has been compared to the more popular stochastic meth-
ods such as Euler-Maruyama and stochastic Rung-Kutta. 
Both of the models have been transformed to systems of 
Stratonovich stochastic differential equations and are 
investigated numerically. Additionally, “parfor” command 
has been embedded into the algorithm to deal with the 
calculation load that comes with Wong-Zakai stochastic 

approximation. The results show that Wong-Zakai method 
performs similarly to the other stochastic schemes. The 
solution graphs, numerical values for solutions and relative 
errors for the methods are all similar to each other mean-
ing Wong-Zakai method performs just as good as the other 
popular stochastic methods. However, it is seen that Wong-
Zakai is not used in the literature as much as other schemes 
that work with Ito SDEs. Considering that “parfor” can be 
used to decrease the calculation time needed for the algo-
rithm and the fact that Wong-Zakai method can be used 
with a selection of deterministic approximation techniques, 
it is obvious that Wong-Zakai acts as a valuable alternative. 
The results show that the method is an accurate and valu-
able approximation technique for the analysis of stochastic 
equations and systems. The motivation of this study was 
to underline the matching performance of Wong-Zakai 
scheme in comparison to the other popular stochastic 
methods in the literature. Two stochastic models with three 
compartments have been used as examples and have been 
investigated numerically using all of the aforementioned 
methods. The findings of the study show that the relative 
error distributions of the methods and the solution graphs 
of the compartments are obtained similarly for Wong-Zakai 
method and the rest of the methods. Considering that “par-
for” command can be used to overcome the extra computa-
tion load that comes with the use of Wong-Zakai method, it 
is obvious that this method is a valuable alternative for the 
investigation of many stochastic models in the literature. 
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