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ABSTRACT

Spinors play a fundamental role in geometry and physics. The Clifford algebra is the natural 
linear algebraic setting where spinors and spin groups are formulated. In this study, spinors, 
which have many uses in Clifford algebras, have been given with a different representation in 
E3. Firstly, the directional q -frame has been considered, and this frame is represented with 
a spinor in spinor space. Later, considering the relations between the directional q -frame 
and Frenet frame, the relations between spinors corresponding to these frames have been 
obtained. In this way, a different construction of the spinors by using in Clifford algebras has 
been shown.
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INTRODUCTION

 Spinors are used in a wide field of study, from geometry 
and Clifford algebra to quantum mechanics and general rel-
ativity in physics. The most important characteristic feature 
of spinors is their behavior under rotations. In other words, 
spinors are characterized by the specific way in which they 
behave under rotations. Namely, if a vector or tensorial 
object rotates with θ, then a spinor which represents this 
rotates by θ / 2. So, the spinor takes two complete cycles to 
return to its original configuration. Spin groups, including 
rotation groups, are frequently defined in geometry and 
Clifford algebras [18, 19]. Hestenes first described spin-
ors with real even multi-vectors in geometric algebra [12, 
15]. Spinors are defined as components of left minimal 

ideals of the Clifford algebra. Moreover, spinors in the left 
ideal approach lie in geometric algebra rather than its even 
subset. Spinors in geometry and physics are elements of a 
complex vector space that can be associated with Euclidean 
space. According to the definition of spinors, they are 
equipped with a complex linear representation of the spin 
group. Namely, the elements of the spin group act as linear 
transformations on the spinor space. Both the spin group 
and its Lie algebra are naturally embedded in Clifford alge-
bra, and in practice, Clifford algebra is usually the easiest 
method to work together.

 Cartan expressed the most general mathematical form 
of spinors in 1913 [5]. Based on Cartan’s study, Torres del 
Castillo and Barrales expressed the relationship between 
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spinor and curve theory [7]. That study is a fundamen-
tal work for scientists studying curve theory. With the 
help of that study, the expression of the curve theory with 
spinor has been understandably expressed. After that, Kişi 
and Tosun gave the spinor representation of the Darboux 
frame on a directed surface in E3 [17]. Moreover, Ünal et 
al. described the spinor formulation of Bishop frame of 
curves in E3 in [20]. Then, Ketenci et al. investigated the 
spinor corresponding to a mutually orthogonal vector 
triad in three-dimensional Minkowski space E3

1. Thus, 
they introduced hyperbolic spinors. Based on that study, 
they gave the hyperbolic spinor formulation of the Frenet 
curve in Minkowski space E3

1 [16]. After that, Erişir et al. 
expressed the spinor equations of an alternative frame of 
a curve in Minkowski space and the spinor formulation 
of the relationship between the Frenet and Bishop frames 
[10]. In addition, the hyperbolic spinor representation of 
the Darboux frame was obtained in E3

1 [1]. After that, Erişir 
and Kardağ expressed a new representation of the involute 
evolute curves in E3 with the help of spinors [13]. Then, the 
spinor formulation of Bertrand curves in E3 was given in 
[11].

 In this paper, firstly, spinors have been introduced alge-
braically. Then, the spinor equations of directional q -frame 
of curves have been defined. Later, the spinor relations 
between the Frenet frame and q -frame of any curve in E3 
have been established. Finally, the angle notation for these 
spinors has been given. In this way, a different geometric 
construction of spinors has been established. The aim of 
this study is to research the spinor structure lying on the 
basis of the differential geometry.

PRELIMINARIES

The Frenet-Serret formulas in differential geometry 
describe the geometric properties of the curve itself irre-
spective of any motion and the kinematic properties of a 
particle moving along a continuous, differentiable curve. 
More specifically, these formulas consist of equations writ-
ten in terms of each other of the derivatives of vectors called 
tangent, normal, and binormal of the differentiable curve. 
The formulas are named after the two French mathemati-
cians who independently discovered them; Frenet in 1847 
and Serret in 1851. The tangent, normal, and binormal 
unit vectors, often denoted by t, n and b, or collectively the 
Frenet-Serret frame, in E3 and are defined as: “A curve is 
considered as differentiable at each point of an open inter-
val. Thus, one can construct a set of mutually orthogo-
nal unit vectors on this curve. “So, let us consider that a 
regular curve (α) is given by the differentiable function 

 where  R is the arc-length parameter. If  
 for all , the curve (α) is called unit speed 

curve. Then the Frenet vectors of a unit speed curve (α) can 
be obtained by ,  and  

 where “'” is the derivative with respect 
to the arc-length parameter s. Moreover, the Frenet formu-
las of this curve are  and  
[14].

 The most known frame of a curve is the Frenet frame. 
Moreover, the Frenet frame has an important place in 
curve theory. Because many known types of curves such 
as Bertrand curves, involute evolute curves, Mannheim 
curves, spherical curves are defined with the help of these 
frame vectors. However, there are some disadvantages of the 
Frenet frame. The main disadvantage of the Frenet frame is 
that it has undesirable rotation around the tangent vector 
[2]. Alternatively, it is possible to define this with different 
frames at the points of space curves. The first study that 
was emphasized a different frame given by Bishop [3] and 
introduced a new frame along a space curve which is more 
suitable for applications. The Bishop frame is widely used 
in computer graphics; however, it is not easy to compute 
[22]. So, as an alternative to the Frenet or Bishop frames, 
a new adapted frame along a space curve, the directional 
q -frame, has been defined [8, 9]. The directional q -frame 
is defined with the help of the quasi-normal vector intro-
duced by Coquillart [6]. The q -frame has many advantages 
compared to other frames (Frenet, Bishop). For instance, 
the directional q -frame can be defined even along a line (κ 
= 0). Moreover, the directional q -frame can be determined 
easily. So, let (α) be a curve with arc-length parameter s, the 
directional q -frame {t, nq, bq, k} along the curve is given by

	 	
(1)

where t is the unit tangent vector, nq is the quasi-normal 
vector, bq is the quasi-binormal vector and k is the projec-
tion vector which can be chosen kx = (1,0,0), ky = (0,1,0) or 
kz = (0,0,1). However, the q -frame is singular in all cases 
where t and k are parallel [8, 9]. The variation equations of 
the q -frame are given by

	 	

(2)

where the q -curvatures {k1, k2, k3} are expressed as 
follows

	 	 (3)

and θ is the Euclidean angle between the principal nor-
mal vector n and the quasi-normal vector nq. Moreover, one 
can see the relation between Frenet frame and directional 
q -frame
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(4)

[8, 9].

Spinors
 Geometrically, spinors are introduced by Cartan [4] as 

follows. One considers the vector x = (x1,x2,x3) ∈ C3 is an 
isotropic vector. So, . The set of isotropic 
vectors in the vector space C3 forms a two-dimensional 
surface in the space C2. Let this two-dimensional sur-
face be parameterized by the coordinates ξ1 and ξ2 where 

, ,  x3= −2ξ1,ξ2. The two vectors 
(ξ1,ξ2) and (−ξ1, −ξ2) in the space C2 represent an isotropic 
vector in the complex vector space C3. On the contrary, the 
same isotropic vector x corresponds to both of these vectors 
in space C2. Thus, the two-dimensional complex vector ξ 
= (ξ1,ξ2) described in this way is called spinor and can be 
shown by the column matrix

	

Moreover, Cartan expressed that the spinors are two-di-
mensional complex vectors and represent three-dimen-
sional complex isotropic vectors [4]. Afterwards, Torres del 
Castillo and Barrales [7] said that the isotropic vector a + ib 
can be represented by the spinor ξ = (ξ1,ξ2) where a, b ∈ R3. 
Moreover, if one considers the matrices 

	

by the help of Pauli matrices, then the spinor equations 
of the vector triad a, b, c can be written a + ib = ξtσξ , c 
= −ξtσξ where a + ib is the isotropic vector in the space C3 

and c ∈ R3. Here, the mate ξ of the spinor ξ is  [7]. 

So, one can see that the vectors a, b and c have the same 
length  and these vectors are mutu-
ally orthogonal. Spinors are needed if it is desired to code 
basic information about the topology of the rotations group 
since this rotation group is not simply connected. Thus, the 
spin group has two elements that representing it for each 
rotation. The relation between orthogonal basis and spin-
ors mentioned above is two to one. That is to say that the 
spinors ξ and −ξ represent the same orthogonal basis {a,b,c} 
with axb,c . It should also be emphasized here that the tri-
ads {a,b,c}, {b,c,a} and {c,a,b} correspond to different spin-
ors [7]. So, the following proposition can be given.

Proposition 2.1 Let ξ and ϕ be two arbitrary spinors. So, 
the following statements are held;

	 	

(5)

where λ, μ ∈ C  “−” denotes the complex conjugate, “t” 
denotes the transpose, and “ˆ” denotes the mate [7].

Moreover, in [7], the spinor equation of a unit speed 
curve was given as follows. Let α : I → E3, (I ⊆ R) be a curve 
parameterized by arc-length. Namely, ||α'(s)|| = 1 and s is 
the arc-length parameter of the curve (α). In addition, the 
triad {n,b,t} is considered as the Frenet frame of this curve 
and the spinor ξ corresponds to this Frenet frame of (α). 
Similar to the orthogonal triad {a,b,c}, the Frenet frame 
{n,b,t} can be represented by a spinor ϕ as follows;

	 	
(6)

where  [7]. Thus, one can give the following 
theorem.

Theorem 2.2 Let the spinor ϕ be represented the Frenet 
frame {n, b, t} of the unit speed curve (α). So, the Frenet 
frame of this curve is characterized by a single spinor equa-
tion as

	

where κ and τ are the curvature and torsion of the curve 
(α), respectively [7].

MAIN THEOREMS AND PROOFS

 In this section, the spinor representation of the direc-
tional q -frame is given. Let α : I ⊆ R→ E3 be a regular and 
unit speed curve and the directional q -frame of this curve 
be {nq, bq, t}. Moreover, we consider that the spinor γ corre-
sponds to this directional q -frame. So, similar to the equa-
tion (2.6), we can write the spinor equation of this frame

	 	
(7)

where nq + ibq ∈ C3 is an isotropic vector, t ∈ R3, “t”  is 
the transpose, and “ˆ” is the mate. In addition to that, since 
the directional q -frame is an orthonormal frame, . 
Now, we write the directional q -curvatures in terms of a 
single spinor equation as follows.

Theorem 3.1 Let us consider that the spinor γ corre-
sponds to the directional q -frame of the unit speed curve 
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(α). So, the derivative of the spinor γ can be written in terms 
of the q -curvatures as follows

	

where {k1, k2, k3} corresponds to the q -curvatures of the 
curve (α) and  is the mate of spinor γ, respectively.

Proof. Let γ be a spinor corresponding to the directional 
q -frame of the unit speed curve (α). So, if the derivative of 
the second equation of (7) with respect to the arc-length 
parameter s is considered, then one can obtain

	

On the other hand, if the reference [7] is taken into 
consideration, we can say that  is a basis for space of 
spinors with two complex components. In this case, there 

are two complex functions f and g that provide the equation 

 So, if these last two expressions are used, 

we can write

with the help of the equations (2) and (5). Thus, we 

obtain  and then 

Now, we consider the Frenet curvatures  of the 
same curve α. Thus, with the help of equation (3), the fol-
lowing conclusion can be obtained.

Conclusion 3.2 Let γ be a spinor corresponding to the 
directional q -frame {nq, bq, t} of the unit speed curve (α). 
So, the q -frame of this curve is characterized by a single 
spinor equation with the help of the Frenet curvatures  
of the same curve as

Proof. Consider that the spinor γ corresponds to the 
directional q -frame {nq, bq, t}, {k1, k2, k3} and  are the 
directional q -curvatures and the Frenet curvatures of the 
curve (α), respectively. So, we know that the relationship 
between these curvatures is given by equation (3). Thus, if 
we use the equation (3), we have 

and finally

Now, we write the spinor equations of the quasi-normal 
vector nq and quasi-binormal vector bq of the isotropic vec-
tor nq + ibq. So, the following conclusion can be given as a 
result of equation (7).

Conclusion 3.3 Let γ be a spinor corresponding to the 
directional q -frame of a unit speed curve (α). So, the qua-
si-normal vector nq, quasi-binormal vector bq in the isotro-
pic vector nq + ibq, and the tangent vector t are written by

where , “−” is the complex conjugate, 
and “t” denotes the transpose.

Theorem 3.4 (Main Theorem) Let α : I ⊆ R→ E3 be 
a unit speed curve and the Frenet frame and directional q 
-frame of this curve be {n, b, t} and {nq, bq, t}. Moreover, the 
spinors ϕ and γ correspond to the Frenet frame and direc-
tional q -frame of this curve, respectively. So, the relation 
between these spinors is

	 	 (8)

where θ is the Euclidean angle between the principal 
normal vector n and the quasi-normal vector nq, and “t”  
denotes the transpose.

Proof. Suppose that the spinors γ and ϕ  corresponds to 
the frames {nq, bq, t} and {n, b, t}. So, from the equation (4), 
we know that

Then, if we use the equations (6) and (7), we have 
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In the light of Theorem 3.4, the following theorem 
related to the relation between the spinors γ and ϕ can be 
given.

Theorem 3.5 Let {n, b, t} and {nq, bq, t} be the Frenet 
frame and directional q -frame of a unit speed curve α : 
I ⊆ R→ E3, ϕ and γ be the spinors corresponding to these 
frames, respectively. Then, the spinor γ is written in terms 
of the spinor ϕ as

where θ is the Euclidean angle between the principal 
normal vector n and the quasi-normal vector nq.

Proof. Assume that θ and γ be denote spinors corre-
sponding to the Frenet frame and directional q -frame. So, 
from the equations (6), (7), and (8), we obtain

It is known from Section 2.1 that the spinors γ (or ϕ) 
and − γ  (or −ϕ) correspond to the same ordered orthonor-
mal basis. So, we can write 

So, we obtain

Thus, the proof is completed.
Thus, the following geometric interpretation can be 

given as a result of Theorem 3.5.
Conclusion 3.6 Let the spinors ϕ and γ correspond to 

the Frenet frame and directional q -frame of the curve α : 
I → E3, respectively. If θ is the angle between the normal 
vector n and the quasi-normal vector nq, then the angle 
between the spinors ϕ and γ is .

We know that the vector k is a projection vector that 
can be chosen as kx = (1,0,0), ky = (0,1,0) or kz = (0,0,1). If 
we consider Vivarelli’s study [21], we can write the spinor 
representation of the projection vector k. We consider the 
spinors εx, εy, εz corresponding to the projection vector k 
(kx, ky, kz) as follows

Moreover, these spinors εx, εy, εz correspond to the first 
columns of the Pauli matrices 

Let us examine these three situations separately. From 

equation (2.1), we know that .

Conclusion 3.7 Let α : I ⊆ R→ E3 be a unit speed curve 
and the directional q  -frame of this curve be {nq, bq, t}. 

Moreover, the spinor  corresponds to the q -frame 

of this curve where  C, and “−” is the complex con-
jugate. So, the following situations are valid.

i)	 For  So, the real 

part of the spinor equation  is zero.

ii)	 For  Thus, the 

imaginary part of the spinor equation  is zero. 

Namely,  R

iii)	For  Thus, the real part of 

the spinor equation γ1γ2 is zero.

CONCLUSION

 Spinors are frequently used in physics, quantum physics 
of fermions, general relativity, and abstract areas of algebra 
and geometry. According to physicists, spinors are very lin-
ear transformations. Thanks to these properties, spinors are 
somehow mathematical entities like tensors, allowing the 
concept of invariance under rotation and Lorentz boosts 
to be considered in a more general way. In this paper, we 
have approached spinors from a geometric perspective and 
considered spinors as two-dimensional vectors in the com-
plex plane. Regardless of a specific application in geometry, 
the most crucial feature of spinors is their behavior under 
rotations. That is, when a vector or tensor object rotates 
by a certain angle, a spinor corresponding to this object 
rotates half that angle. Therefore, for this object to return to 
its original position, the spinor must rotate two full turns. 
Starting from this, geometric interpretations of the angle 
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between these spinors have been made by corresponding 
one spinor each to the Frenet frame and the directional 
q-frame in three-dimensional Euclidean space. Therefore, 
in this study, it is thought that by using spinors, a new per-
spective will be gained in the fields of physics, algebra, and 
geometry with this study.
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