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ABSTRACT

Dominance based rough set approach is important in studies conducted with datasets con-
taining uncertainty. In this study, a dataset consisting of 1030 samples obtained in the labora-
tory regarding compressive strength of concrete has been considered. The decision attribute, 
which has continuous values, has been made discrete for applying dominance relation. In 
order to measure performance, samples in the dataset have been divided into two groups: 
the training set and the testing set. This process has been done in a way that corresponds 
to the distribution of each class within the dataset. On the other hand, since there is a class 
which has more or less samples than the others, synthetic data generation has been done with 
Synthetic Minority Oversampling Technique (SMOTE) in order to handle the between-class 
imbalance problem and equalize the number of samples in the classes. As a result, the training 
set has been made perfectly balanced. A decision-support model which extracts “if… then…” 
exact decision rules has been designed to be used in determining the quality or compressive 
strength of the concrete samples by using dominance based rough set approach. Performance 
of these rules on the testing set through the confusion matrix has been discussed. The exper-
imental results show that performance of the exact decision rules induced by the 
dominance rough set approach on the testing set is significant.

Cite this article as: Topal A, Güler Bayazıt N, Uçan Y. Prediction of compressive strength class 
of concrete with dominance based rough set approach. Sigma J Eng Nat Sci 2023;41(6):1088−1095.

Research Article

Prediction of compressive strength class of concrete with dominance 
based rough set approach* 

Ahmet TOPAL1,2,** , Nilgün GÜLER BAYAZIT1 , Yasemen UÇAN1

1Department of Mathematical Engineering, Yildiz Technical University, Istanbul, 34349, Türkiye
2Department of Mathematics, Istanbul Technical University, Istanbul, 34469, Türkiye

ARTICLE INFO

Article history
Received: 22 November 2021
Revised: 08 February 2022
Accepted: 12 March 2022

Keywords:
Dominance Based Rough Set; 
Decision Rules; Compressive 
Strength Of Concrete; Decision-
Support Model

**Corresponding author.
**E-mail address: atopal@itu.edu.tr  
This paper was recommended for publication in revised form by 
Regional Editor Abdullahi Yusuf

Published by Yıldız Technical University Press, İstanbul, Turkey
Copyright 2021, Yıldız Technical University. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

INTRODUCTION

Determining compressive strength of concrete is an 
important task in the concrete-structure industry. The most 
considerable reason is to better understand the nature of 
the concrete and how the mixture will be optimized [1]. In 
1918, the water-cement ratio (w/c) regarding compressive 

strength of concrete presented by Abrams [2] appeared to 
be quite a useful and important advancement in this field. 
According to this ratio, compressive strength of concrete 
decreases as w/c ratio increases, and increases as this ratio 
decreases. However, this is not totally true; experimental 
results [3] show that concretes with the same w/c ratio can 
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have different compressive strength. This situation also 
reveals that other ingredients in the concrete affect the 
compressive strength. Hence, it is essential to consider the 
different ingredients that concrete contains.

There are many studies in the literature on compressive 
strength of concrete. However, most of them are estimation 
studies based on regression [1,4-8]. Yeh [1] showed that the 
concrete compressive strength model based on the artifi-
cial neural network is better than the regression analysis 
model with respect to R2 metric. Silva et al. [6] developed 
the Decision Tree and Random Forest models in order to 
predict the compressive strength of concrete, and compared 
the methods with regard to their predicting capabilities. 
Özturan et al. [7] designed five system models consider-
ing various input variables and applied Artificial Neural 
Network (ANN) models as well as multiple regression and 
Abrams’ Law to each of them. Ahmad et al. [8] trained 
supervised learning algorithms such as Decision Tree, 
AdaBoost and Random Forest on 165 experimental data 
and assessed these methods comparatively on the remain-
ing 42 samples using statistical indices. Unlike previous 
studies, in our study, the decision-support model has been 
designed using Dominance Based Rough Set Approach 
(DRSA) to decide compressive strength. As is well known, 
the decision-support model is more preferable than the 
regression-based model, because it gives more concrete and 
explainable results and is easy for anyone to interpret with-
out technical knowledge.

Concrete compressive strength (CCS) attribute values 
have been converted from continuous form to discrete form 
in order to apply DRSA on the dataset. This discretization 
process has been carried out according to [9]. As a result 
of the discretization period, four different concrete classes- 
low, normal, medium and high- have been generated. In 
order to measure the performance of the decision support 
model on classifying the concrete samples, the testing set 
consists of 100 samples considering the distribution of 
classes in the dataset. However, in the dataset, the between-
class imbalance problem arises due to the fact that one class 
has significantly fewer samples than the others. Because of 
this situation, the learning process becomes more difficult. 
Synthetic data generation, which equalizes the number of 
samples in each class, has been made based on the SMOTE 
algorithm to avoid the between-class imbalance problem. 
Exact decision rules have been extracted with DRSA on 
the perfectly balanced training set. Performance analysis of 
these decision rules has been discussed on the testing set.

This paper’s key contribution is that it develops a deci-
sion-support system model based on DRSA to better under-
stand the effect of ingredients in the concrete mix. For this 
purpose, the data [10] about compressive strength of con-
crete created by Chung Hua University Civil Engineering 
faculty member Prof. I-Cheng Yeh have been used. The rest 
of the paper is organized as follows: DRSA is explained in 
the second section. Section 3 summarizes the method about 
classifying samples in the testing set. Section 4 presents the 

experimental design and results. The last part of the paper 
presents the concluding remarks.

MATERIALS AND METHODS

The rough set theory was first introduced by Pawlak 
[11] as a new mathematical tool to deal with vagueness and 
uncertainty. Rough set methodologies can be applied as a 
component of hybrid solutions in data mining and machine 
learning. It is preferred especially in the following cases: 
discovering hidden information, extracting decision rules, 
feature selection, sample selection and performance on 
datasets with missing values. In addition, it can be said that 
it has extended application including areas such as machine 
learning, decision analysis, expert systems, decision-sup-
port systems and pattern recognition. Also, the rough set 
approach, based on data analysis methodologies, seems 
quite useful in economics, finance, medicine, signal and 
image processing, robotics and engineering [12-15].

Rough set of Pawlak [11] is based on the indiscernibility 
relation. However, this approach cannot deal with incon-
sistency originating in the dominance principle. Therefore, 
the rough set theory based on dominance relation instead 
of indiscernibility relation was developed by Greco et al. 
[16] (Dominance Based Rough Set Approach). DRSA is an 
improvement of rough set theory for multi-criteria decision 
analysis (MCDA) [17,18].

Domınance Based Rough Set Approach
In this section, the mathematical background of our 

study is summarized [19-22]. A decision table is defined as 
 in DRSA, where U is a finite set of 

objects, C and D are the condition and decision attribute 
sets, respectively, V is the set of values taken by all attri-
butes (i.e. Let  be the set of values taken by attribute a, 
then ), and  is called the infor-
mation function. For the sake of simplicity, we suppose that 

.
Let Oa be the outranking relation on U with respect to 

attribute a. xOay refers “object x is at least as good as object 
y” on attribute a. Furthermore, let  be the 
set of different values taken by decision attribute d, then 
decision attribute d makes a partition of the universal set 
U into r distinct classes such that , where 

. Each  belongs to one and 
only one . The downward and upward unions of these 
classes  are defined as  
and , respectively.

In DRSA, if xOay for all , then “object x is 
dominating object y” and is denoted by xDpy. The rela-
tion Dp satisfies reflexive and transitive properties, i.e. 
Dp is a preorder relation. Given an element  and 
a set , P-dominated and P-dominating sets of 
object  are defined as  and 

, respectively. In other words, 
the P-dominated set of xi contains the objects which are at 
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most as good as itself with respect to all attributes of the set 
P. Similarly, the P-dominating set of xi contains the objects 
which are at least as good as itself with respect to all attri-
butes of the set P.

Lower and upper approximations of the upward union 
of the classes  are defined as follows by using set :

	 	
(1)

In a similar way, lower and upper approximations of the 
downward union of the classes  are defined as follows by 
using set :

	 	
(2)

P-boundaries for  and  are defined as follows:

	 	 (3)

	 	 (4)

In DRSA, a decision table can be seen as a set of decision 
rules in the form of IF {elementary condition(s)}, THEN 
{decision} [22]. Here, the condition part refers to the value 
taken by one or more condition attributes and the decision 
part refers to the assignment to one or more decision classes. 
Decision rules can be categorized into three groups: certain 
decision rules extracted from lower approximations, pos-
sible decision rules extracted from upper approximations, 
and approximate decision rules extracted from boundary 
regions. In our study, exact decision rules extracted from 
lower approximations have been considered, and the fol-
lowing are their syntaxes:
·	 Exact -rules: IF  and  

and … , THEN .
·	 Exact -rules: IF  and  

and … , THEN .
where P = {a1, a2, ⋯ , ap} ⊆ C, (va1, va2, ⋯ , vaP) ∈ Va1 × 

Va2 × ⋯ × VaP and t ∈ δ.

Classification Method for Samplesin Testing Set
In this section, the classification method that deter-

mines the decision class of any test samples has been sum-
marized in the context of exact decision rules obtained 
from the transformed decision tables [23,24]. For this, let 
x be any test sample and  be the set of rules which covers 
the object x. In order to decide the class of the object x, 
score calculations should be done considering the following 
three situations:
1.	 The object x is not covered by any rules, i.e. .
2.	 The object x is covered by only one rule, i.e. .

3.	 The object x is covered by more than one rule, i.e. 
.

In Situation 1, assignment of x to any decision class has 
the same probability. In other words, let  be the 
score indicating that object x can belong to class . In this 
case .

For the second situation, score calculation is done by 
looking at the decision part of the rule. In this context, the 
expression  will be used to denote 
assignment to class , whereas  will 
be used to denote assignment to .
i.	 If object x is covered by rule r having decision part 

, then the following formula is 
used to calculate the score:

	  	 (5)

ii.	 If object x is covered by rule r having decision part 
, then the score is calculated using 

the formula below:

 	 	 (6)

where  and  represent the set of objects cov-
ered by rules having a decision part  
and , respectively,  denotes the cardi-
nality of the sets, and the set  is the complement of , 
i.e. .

Depending upon the decision part of the rule, the 
final score for each  is either  or 

. As a result of the calculations, 
object x is assigned to the decision class that has the highest 
score for , while it is assigned to the decision class 
that has the lowest score for .

For more than one rule, Situation 3 is an extension of 
Situation 2. By using the decision part of the rules, the set 
of rules covering the object x is separated into two subsets: 
those that propose assignment of x to  and those that 
propose assignment of x to . We will denote the assign-
ment of x to  as  and assignment 
of x to  as  in the decision part 
of the rules. Similar to (i) and (ii), the scores  and 

 are calculated like this:

 	 	 (7)

	 	
(8)

where  indicates the set of elements covered by the 
ith of rules having the decision part , 
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and  indicates the set of elements covered by the jth of 
rules having the decision part .

In Situation 3, the following formula is used to deter-
mine the final score for each decision class:

	 	 (9)

So, object x is assigned to the decision class with the 
highest value of .

RESULTS AND DISCUSSION

Data on compressive strength of concrete created by Yeh 
[10], with consideration of various components, have been 
used in this study in which we examine the strength of the 
concrete samples through the rules extracted on the basis 
of the dominance based rough set approach. This dataset 
consists of 1030 concrete samples and 9 continuous attri-
butes that describe each concrete sample in terms of various 
characteristics. Eight of these nine attributes listed in Table 
1 correspond the materials that comprise the concrete mix, 
and the remaining one is the compressive strength.

The first eight attributes in Table 1 specify the condition 
attributes, whereas the final attribute, CCS, specifies the 
decision attribute. It is necessary that all values of the deci-
sion attribute should be discrete with the aim of applying 
dominance relation. For this reason, the continuous CCS 
attribute is discretized as in Table 2. As a result of the dis-
cretization process, it is observed that there are 181 (17.57 
%) low, 436 (42.33 %) normal, 374 (36.31 %) medium, and 
39 (3.78 %) high types of concrete within the dataset. In 
order to analyze the performance of the exact decision rules 
extracted in DRSA, the dataset has been divided into two 
parts: the testing set and the training set. In the testing set, 
there are 17 low, 42 normal, 36 medium and 5 high con-
crete type samples in parallel with the number of samples 

in each class. The training set is made up of the remaining 
930 samples.

Since the attributes in DRSA have preference ordered 
domains, it is required that the preference order for each 
attribute in the dataset should be decided. An attribute is 
called a gain type attribute if higher values of its domain are 
better, and a cost type attribute if lower values of its domain 
are better. Deciding the preference order for an attribute can 
be done by a domain expert, but without a domain expert it 
should be handled with the approach presented in [23]. In 
this study, this approach has been undertaken in deciding 
the preference order of attributes using the following steps 
for transforming the original decision table: 
1.	 The decision table is copied the same number of times 

as the different values that the decision attribute takes. 
That is, a decision table for each class (low, normal, 
medium and high) is replicated from the original one.

2.	 Decision attribute values in each replicated decision 
table are modified as 0 or 1 depending on whether the 
value is from the class which the decision table is gener-
ated or not. For example, low values in the decision field 
are modified by 1, and all others are modified by 0 when 
the decision table generated from the low class is taken 
into account.

3.	 In the last stage, decision tables are set up so that they 
have two of each condition attribute, one is gain and the 
other is cost
In Table 3, 5-sample piece of the dataset is provided in 

the form of a decision table and Table 4 shows an example 
transformation for the class medium using the three steps 
listed above. The gain type and cost type attributes are rep-
resented by the symbols (↑) and (↓) in Table 4, respectively.

The issue of between-class imbalance occurs when one 
class has numerically more samples than the others. Such a 
situation leads to the dataset becoming unbalanced without 
an equal number of samples in each class. A class which has 
more samples is called majority class, and a class which has 
less samples is called minority class. In this paper, we chose 
normal strength class as the majority and high strength class 
as the minority by analyzing the superiority of classes from 
the standpoint of sample numbers. The number of sam-
ples in the majority class divided by the number of sam-
ples in the minority class simply states the unbalance ratio 
[25]. The unbalance ratio is calculated as . 

Table 1. Decision and condition attributes in the dataset

Attribute Name Attribute Type
Cement (kg/m3) Condition attr.
Blast Furnace Slag (kg/m3) Condition attr.
Fly Ash (kg/m3) Condition attr.
Water (kg/m3) Condition attr.
Super Plasticizer (kg/m3) Condition attr.
Coarse Aggregate (kg/m3) Condition attr.
Fine Aggregate (kg/m3) Condition attr.
Age (Day) Condition attr.
CCS (MPa) Decision attr.

Table 2. Grouping of concrete based on compressive 
strength [9]

Concrete Type Compressive Strength (MPa)
Low Strength 0-19
Normal Strength 20-39
Medium Strength 40-69
High Strength 70-119
Ultra-High Strength 120-1000
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Datasets having an unbalance ratio greater than 4 are seen 
as extremely unbalanced and then it is difficult to learn 
the patterns in the minority [26]. Therefore, the SMOTE 
algorithm (see Figure 1) proposed by Chawla et al. [27] was 
used to generate new data points and avoid unequal dis-
tribution between the classes in the extremely unbalanced 
training dataset.

After the preprocessing steps, exact decision rules were 
extracted from each transformed decision table (see Table 
4) with the help of DomLem [19] algorithm on JAMM [28] 
software tool and the performance analysis of the decision 
support system on the testing set was assessed with the 
Python program that we developed. Sample exact decision 
rules derived from each transformed decision table are 
illustrated in Figure 2, and Table 5 shows the total number 
of exact decision rules. 

The greatest advantage provided by a rule-based decision 
algorithm is that it can be simply understood and interpreted 

by someone who lacks technical knowledge and skills. For 
example, rule number 7 shows that concrete with Cement 
quantity less than or equal to 273 kg/m3 does not have high 
strength. In mathematical notation, we can simply write this 
rule as . 
Another example is rule number 2, which states that 
concrete with Fly Ash content of 133.6 to 134 kg/m3 has 
low strength. Analogously, this rule can be written as 

 in mathematical 
form. Another advantage of rule-based decision algorithms 
is the ability to recognize what the main factors are in an 
estimating process and to evaluate whether the mechanism 
for a certain sample condition performs correctly or not.

In Figure 2, the decision part of rules will be interpreted 
that CCS ≤ 0 denotes assignment to outside the class, 
whereas CCS ≥ 1 denotes assignment to the class itself.

A confusion matrix was constructed to observe the 
performance of the decision support model on the testing 
set. Since the state of the sample assigned to more than one 
class would be ambiguous, two samples in the testing set 
have been excluded from the confusion matrix. Due to the 
extremely unbalanced dataset, a macro-f1 score, which is 
more sensitive to the changes in the minority class, was uti-
lized as a performance metric instead of overall accuracy.

In a confusion matrix, rows indicate the true classes 
of the samples in the testing set, while columns indicate 
the predicted classes. For instance, when examined on the 
basis of row, there are 34 samples in class medium, with 
25 of them correctly labeled as medium and the remaining 

Table 3. View of 5-sample piece of the decision table

Condition Attributes Decision Attribute

Sample No Cement (kg/m3) Blast Furnace Slag (kg/m3) ... ... CCS  (MPa)
1 540 0 ... ... High
2 332.5 142.5 ... ... Medium
3 266 114 ... ... Medium
4 380 95 ... ... Normal
5 139.6 209.4 ... ... Low

Table 4. An example transformation of the original table piece shown in Table 3 for class medium

Condition Attributes Decision Attribute

Sample No Cement-1 (kg/m3)
(↑)

Cement-2 (kg/m3)
(↓)

Blast Furnace Slag-1
(kg/m3) (↑)

Blast Furnace Slag-2
(kg/m3) (↓)

... CCS (MPa)
(↑)

1 540 540 0 0 ... 0
2 332.5 332.5 142.5 142.5 ... 1
3 266 266 114 114 ... 1
4 380 380 95 95 ... 0
5 139.6 139.6 209.4 209.4 ... 0

Figure 1. Steps in the SMOTE algorithm.
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9 incorrectly labeled as normal. Given that there are 36 
medium class samples in the testing set, it is understood 
that 2 samples have been assigned to more than one class.

Macro-f1 score has been calculated as 85%. Therefore, 
it can be said that performance of exact decision rules 
extracted with DRSA on the testing set has been significant. 
While decision rules can almost correctly label samples in 
class low and class high, labelling a meaningful number of 
samples related to class medium as normal is a noteworthy 
finding.

Optimum amounts in a mixture can be determined for 
each concrete class, taking into account the score calcula-
tions described in Section 3. We will consider Situation 3, 
the most generalized score calculation, to determine the 

range of each component in the mixture. Due to the impor-
tance of high performance concrete in terms of industry, 
the interval of each component for high-strength concrete 
type has been obtained and given in Table 7. The probabil-
ity of concrete belonging to the class high increases when 
the value  is as high as possi-
ble and the value  is as low as 
possible. As a result, the sample desired to have high dura-
bility should include rules with a maximum number of CCS 
≥ 1 decision parts and rules with a minimum number of 

Table 7. Amount interval of each component in the mix-
ture to obtain high performance concrete

Attribute name (unit)(abbr.) Amount interval
Cement (kg/m3) (a1) a1≥531.419
Blast Furnace Slag (kg/m3) (a2) 189.249≤a2≤189.772
Fly Ash (kg/m3) (a3) a3 does not any upper or lower 

bound
Water (kg/m3) (a4) 149.348≤a4≤151.149
Super Plasticizer (kg/m3) (a5) 11.3064≤a5<11.61
Coarse Aggregate (kg/m3) (a6) 908.923<a6≤913.656
Fine Aggregate (kg/m3) (a7) 744.917<a7≤753.647
Age (Day) (a8) a8>29

Figure 2. Examples of exact decision rule assigned to the class itself and outside the class for each transformed table.

Table 5. Number of exact decision rules extracted for decision tables

Decision Tables Number of rules assigned 
to outside the class

Number of rules assigned 
to the class itself

Total number of rules

Low Strength 57 55 112
Normal Strength 120 117 237
Medium Strength 91 100 191
High Strength 31 24 55

Table 6. Confusion matrix

Predicted Classes

Low Normal Medium High

A
ct

ua
l C

la
ss

es Low 14 3 0 0

Normal 3 35 4 0

Medium 0 9 25 0

High 0 0 0 5
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CCS ≤ 0 decision  parts among the decision rules extracted 
from the transformed decision table for high strength.

It is clearly seen that high performance concrete is not 
affected by the presence of Fly Ash component. Moreover, 
there is no upper limit for the components Cement and Age. 
This shows that the increase in Cement and Age after a cer-
tain value cannot impair the high durability of concrete.

CONCLUSION

Concrete, which is a composite material, has a com-
plex structure due to its content. Understanding the com-
plex structure of concrete is critical in order to model its 
compressive strength. Consequently, the aim of this study 
was to create a decision-support system that could esti-
mate the compressive strength of concrete while taking 
into account the various components. Rule-based mod-
els, rather than regression models, indicate the impacts of 
different components on compressive strength in a clearer 
manner. For instance, there are no upper or lower limits 
for Fly Ash component. Obviously, this highlights the fact 
that high-performance concrete is independent of Fly Ash. 
Furthermore, some rules extracted from the decision table 
transformed for high strength can have one elementary 
condition including only the components Water or Cement. 
This indicates that a direct influence of Water and Cement 
on compressive strength is feasible, however, the effect of an 
ingredient other than these two is possible with other ingre-
dients in the mix. Another finding is that high strength 
concrete is unlimited in the upper direction for the com-
ponents Cement and Age. These are worthy results for high 
performance concrete. On the other hand, since there are 
few samples in the dataset, the capacity of the decision rules 
to generalize declines, resulting in ambiguous assignments 
due to a lack of learning. So, the vague situation associated 
with assigning a sample to more than one class is reduced 
thanks to synthetic data generation.
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